{"title":"Deep learning-based segmentation of acute ischemic stroke MRI lesions and recurrence prediction within 1 year after discharge: A multicenter study.","authors":"Jianmo Liu, Jingyi Li, Yifan Wu, Haowen Luo, Pengfei Yu, Rui Cheng, Xiaoman Wang, Hongfei Xian, Bin Wu, Yongsen Chen, Jingyao Ke, Yingping Yi","doi":"10.1016/j.neuroscience.2024.12.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the performance of deep learning-based segmentation of infarcted lesions in the brain magnetic resonance imaging (MRI) of patients with acute ischemic stroke (AIS) and the recurrence prediction value of radiomics within 1 year after discharge as well as to develop a model incorporating radiomics features and clinical factors to accurately predict AIS recurrence.</p><p><strong>Materials and methods: </strong>To generate a segmentation model of MRI lesions in AIS, the deep learning algorithm multiscale residual attention UNet (MRA-UNet) was employed. Furthermore, the risk factors for AIS recurrence within 1 year were explored using logistic regression (LR) analysis. In addition, to develop the prediction model for AIS recurrence within 1 year after discharge, four machine learning algorithms, namely, LR, RandomForest (RF), CatBoost, and XGBoost, were employed based on radiomics data, clinical data, and their combined data.</p><p><strong>Results: </strong>In the validation set, the Mean Dice (MDice) and Mean IOU (MIou) of the MRA-UNet segmentation model were 0.816 and 0.801, respectively. In multivariate LR analysis, age, renal insufficiency, C-reactive protein, triglyceride glucose index, prognostic nutritional index, and infarct volume were identified as the independent risk factors for AIS recurrence. Furthermore, in the validation set, combining radiomics data and clinical data, the AUC was 0.835 (95%CI:0.738, 0.932), 0.834 (95%CI:0.740, 0.928), 0.858 (95%CI:0.770, 0.946), and 0.842 (95%CI:0.752, 0.932) for the LR, RF, CatBoost, and XGBoost models, respectively.</p><p><strong>Conclusion: </strong>The MRA-UNet model can effectively improve the segmentation accuracy of MRI. The model, which was established by combining radiomics features and clinical factors, held some value for predicting AIS recurrence within 1 year.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"222-231"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.12.002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To explore the performance of deep learning-based segmentation of infarcted lesions in the brain magnetic resonance imaging (MRI) of patients with acute ischemic stroke (AIS) and the recurrence prediction value of radiomics within 1 year after discharge as well as to develop a model incorporating radiomics features and clinical factors to accurately predict AIS recurrence.
Materials and methods: To generate a segmentation model of MRI lesions in AIS, the deep learning algorithm multiscale residual attention UNet (MRA-UNet) was employed. Furthermore, the risk factors for AIS recurrence within 1 year were explored using logistic regression (LR) analysis. In addition, to develop the prediction model for AIS recurrence within 1 year after discharge, four machine learning algorithms, namely, LR, RandomForest (RF), CatBoost, and XGBoost, were employed based on radiomics data, clinical data, and their combined data.
Results: In the validation set, the Mean Dice (MDice) and Mean IOU (MIou) of the MRA-UNet segmentation model were 0.816 and 0.801, respectively. In multivariate LR analysis, age, renal insufficiency, C-reactive protein, triglyceride glucose index, prognostic nutritional index, and infarct volume were identified as the independent risk factors for AIS recurrence. Furthermore, in the validation set, combining radiomics data and clinical data, the AUC was 0.835 (95%CI:0.738, 0.932), 0.834 (95%CI:0.740, 0.928), 0.858 (95%CI:0.770, 0.946), and 0.842 (95%CI:0.752, 0.932) for the LR, RF, CatBoost, and XGBoost models, respectively.
Conclusion: The MRA-UNet model can effectively improve the segmentation accuracy of MRI. The model, which was established by combining radiomics features and clinical factors, held some value for predicting AIS recurrence within 1 year.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.