Deep learning-based segmentation of acute ischemic stroke MRI lesions and recurrence prediction within 1 year after discharge: A multicenter study.

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Neuroscience Pub Date : 2025-01-26 Epub Date: 2024-12-02 DOI:10.1016/j.neuroscience.2024.12.002
Jianmo Liu, Jingyi Li, Yifan Wu, Haowen Luo, Pengfei Yu, Rui Cheng, Xiaoman Wang, Hongfei Xian, Bin Wu, Yongsen Chen, Jingyao Ke, Yingping Yi
{"title":"Deep learning-based segmentation of acute ischemic stroke MRI lesions and recurrence prediction within 1 year after discharge: A multicenter study.","authors":"Jianmo Liu, Jingyi Li, Yifan Wu, Haowen Luo, Pengfei Yu, Rui Cheng, Xiaoman Wang, Hongfei Xian, Bin Wu, Yongsen Chen, Jingyao Ke, Yingping Yi","doi":"10.1016/j.neuroscience.2024.12.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To explore the performance of deep learning-based segmentation of infarcted lesions in the brain magnetic resonance imaging (MRI) of patients with acute ischemic stroke (AIS) and the recurrence prediction value of radiomics within 1 year after discharge as well as to develop a model incorporating radiomics features and clinical factors to accurately predict AIS recurrence.</p><p><strong>Materials and methods: </strong>To generate a segmentation model of MRI lesions in AIS, the deep learning algorithm multiscale residual attention UNet (MRA-UNet) was employed. Furthermore, the risk factors for AIS recurrence within 1 year were explored using logistic regression (LR) analysis. In addition, to develop the prediction model for AIS recurrence within 1 year after discharge, four machine learning algorithms, namely, LR, RandomForest (RF), CatBoost, and XGBoost, were employed based on radiomics data, clinical data, and their combined data.</p><p><strong>Results: </strong>In the validation set, the Mean Dice (MDice) and Mean IOU (MIou) of the MRA-UNet segmentation model were 0.816 and 0.801, respectively. In multivariate LR analysis, age, renal insufficiency, C-reactive protein, triglyceride glucose index, prognostic nutritional index, and infarct volume were identified as the independent risk factors for AIS recurrence. Furthermore, in the validation set, combining radiomics data and clinical data, the AUC was 0.835 (95%CI:0.738, 0.932), 0.834 (95%CI:0.740, 0.928), 0.858 (95%CI:0.770, 0.946), and 0.842 (95%CI:0.752, 0.932) for the LR, RF, CatBoost, and XGBoost models, respectively.</p><p><strong>Conclusion: </strong>The MRA-UNet model can effectively improve the segmentation accuracy of MRI. The model, which was established by combining radiomics features and clinical factors, held some value for predicting AIS recurrence within 1 year.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"222-231"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.12.002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To explore the performance of deep learning-based segmentation of infarcted lesions in the brain magnetic resonance imaging (MRI) of patients with acute ischemic stroke (AIS) and the recurrence prediction value of radiomics within 1 year after discharge as well as to develop a model incorporating radiomics features and clinical factors to accurately predict AIS recurrence.

Materials and methods: To generate a segmentation model of MRI lesions in AIS, the deep learning algorithm multiscale residual attention UNet (MRA-UNet) was employed. Furthermore, the risk factors for AIS recurrence within 1 year were explored using logistic regression (LR) analysis. In addition, to develop the prediction model for AIS recurrence within 1 year after discharge, four machine learning algorithms, namely, LR, RandomForest (RF), CatBoost, and XGBoost, were employed based on radiomics data, clinical data, and their combined data.

Results: In the validation set, the Mean Dice (MDice) and Mean IOU (MIou) of the MRA-UNet segmentation model were 0.816 and 0.801, respectively. In multivariate LR analysis, age, renal insufficiency, C-reactive protein, triglyceride glucose index, prognostic nutritional index, and infarct volume were identified as the independent risk factors for AIS recurrence. Furthermore, in the validation set, combining radiomics data and clinical data, the AUC was 0.835 (95%CI:0.738, 0.932), 0.834 (95%CI:0.740, 0.928), 0.858 (95%CI:0.770, 0.946), and 0.842 (95%CI:0.752, 0.932) for the LR, RF, CatBoost, and XGBoost models, respectively.

Conclusion: The MRA-UNet model can effectively improve the segmentation accuracy of MRI. The model, which was established by combining radiomics features and clinical factors, held some value for predicting AIS recurrence within 1 year.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信