Enhancing human activity recognition for the elderly and individuals with disabilities through optimized Internet-of-Things and artificial intelligence integration with advanced neural networks.
IF 2.5 4区 医学Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
R Deeptha, K Ramkumar, Sri Venkateswaran, Mohammad Mehedi Hassan, Md Rafiul Hassan, Farzan M Noori, Md Zia Uddin
{"title":"Enhancing human activity recognition for the elderly and individuals with disabilities through optimized Internet-of-Things and artificial intelligence integration with advanced neural networks.","authors":"R Deeptha, K Ramkumar, Sri Venkateswaran, Mohammad Mehedi Hassan, Md Rafiul Hassan, Farzan M Noori, Md Zia Uddin","doi":"10.3389/fninf.2024.1454583","DOIUrl":null,"url":null,"abstract":"<p><p>Elderly and individuals with disabilities can greatly benefit from human activity recognition (HAR) systems, which have recently advanced significantly due to the integration of the Internet of Things (IoT) and artificial intelligence (AI). The blending of IoT and AI methodologies into HAR systems has the potential to enable these populations to lead more autonomous and comfortable lives. HAR systems are equipped with various sensors, including motion capture sensors, microcontrollers, and transceivers, which supply data to assorted AI and machine learning (ML) algorithms for subsequent analyses. Despite the substantial advantages of this integration, current frameworks encounter significant challenges related to computational overhead, which arises from the complexity of AI and ML algorithms. This article introduces a novel ensemble of gated recurrent networks (GRN) and deep extreme feedforward neural networks (DEFNN), with hyperparameters optimized through the artificial water drop optimization (AWDO) algorithm. This framework leverages GRN for effective feature extraction, subsequently utilized by DEFNN for accurately classifying HAR data. Additionally, AWDO is employed within DEFNN to adjust hyperparameters, thereby mitigating computational overhead and enhancing detection efficiency. Extensive experiments were conducted to verify the proposed methodology using real-time datasets gathered from IoT testbeds, which employ NodeMCU units interfaced with Wi-Fi transceivers. The framework's efficiency was assessed using several metrics: accuracy at 99.5%, precision at 98%, recall at 97%, specificity at 98%, and F1-score of 98.2%. These results then were benchmarked against other contemporary deep learning (DL)-based HAR systems. The experimental outcomes indicate that our model achieves near-perfect accuracy, surpassing alternative learning-based HAR systems. Moreover, our model demonstrates reduced computational demands compared to preceding algorithms, suggesting that the proposed framework may offer superior efficacy and compatibility for deployment in HAR systems designed for elderly or individuals with disabilities.</p>","PeriodicalId":12462,"journal":{"name":"Frontiers in Neuroinformatics","volume":"18 ","pages":"1454583"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615478/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fninf.2024.1454583","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Elderly and individuals with disabilities can greatly benefit from human activity recognition (HAR) systems, which have recently advanced significantly due to the integration of the Internet of Things (IoT) and artificial intelligence (AI). The blending of IoT and AI methodologies into HAR systems has the potential to enable these populations to lead more autonomous and comfortable lives. HAR systems are equipped with various sensors, including motion capture sensors, microcontrollers, and transceivers, which supply data to assorted AI and machine learning (ML) algorithms for subsequent analyses. Despite the substantial advantages of this integration, current frameworks encounter significant challenges related to computational overhead, which arises from the complexity of AI and ML algorithms. This article introduces a novel ensemble of gated recurrent networks (GRN) and deep extreme feedforward neural networks (DEFNN), with hyperparameters optimized through the artificial water drop optimization (AWDO) algorithm. This framework leverages GRN for effective feature extraction, subsequently utilized by DEFNN for accurately classifying HAR data. Additionally, AWDO is employed within DEFNN to adjust hyperparameters, thereby mitigating computational overhead and enhancing detection efficiency. Extensive experiments were conducted to verify the proposed methodology using real-time datasets gathered from IoT testbeds, which employ NodeMCU units interfaced with Wi-Fi transceivers. The framework's efficiency was assessed using several metrics: accuracy at 99.5%, precision at 98%, recall at 97%, specificity at 98%, and F1-score of 98.2%. These results then were benchmarked against other contemporary deep learning (DL)-based HAR systems. The experimental outcomes indicate that our model achieves near-perfect accuracy, surpassing alternative learning-based HAR systems. Moreover, our model demonstrates reduced computational demands compared to preceding algorithms, suggesting that the proposed framework may offer superior efficacy and compatibility for deployment in HAR systems designed for elderly or individuals with disabilities.
期刊介绍:
Frontiers in Neuroinformatics publishes rigorously peer-reviewed research on the development and implementation of numerical/computational models and analytical tools used to share, integrate and analyze experimental data and advance theories of the nervous system functions. Specialty Chief Editors Jan G. Bjaalie at the University of Oslo and Sean L. Hill at the École Polytechnique Fédérale de Lausanne are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neuroscience is being propelled into the information age as the volume of information explodes, demanding organization and synthesis. Novel synthesis approaches are opening up a new dimension for the exploration of the components of brain elements and systems and the vast number of variables that underlie their functions. Neural data is highly heterogeneous with complex inter-relations across multiple levels, driving the need for innovative organizing and synthesizing approaches from genes to cognition, and covering a range of species and disease states.
Frontiers in Neuroinformatics therefore welcomes submissions on existing neuroscience databases, development of data and knowledge bases for all levels of neuroscience, applications and technologies that can facilitate data sharing (interoperability, formats, terminologies, and ontologies), and novel tools for data acquisition, analyses, visualization, and dissemination of nervous system data. Our journal welcomes submissions on new tools (software and hardware) that support brain modeling, and the merging of neuroscience databases with brain models used for simulation and visualization.