Dongho Keum, Siyoung Cho, Jean Bouffard and Youngmi Kim
{"title":"Stimuli-triggered modulation of solid-state excimer emission in push–pull cyanovinylene dyes†","authors":"Dongho Keum, Siyoung Cho, Jean Bouffard and Youngmi Kim","doi":"10.1039/D4TC02736A","DOIUrl":null,"url":null,"abstract":"<p >Solid-state light-emitting organic materials that can reversibly alter their optical properties in response to external stimuli have immense potential for applications in information storage, displays, and sensors. However, achieving large, readily perceptible spectral shifts with high reversibility and stability upon exposure to stimuli remains challenging. This study presents cyanovinylene-based dyes (<strong>CV<em>n</em></strong>) exhibiting remarkable thermochromism and mechanochromism arising from the controlled formation of emissive excimers in the solid state. By tuning the intermolecular interactions, particularly π–π stacking and dipole–dipole interactions, through varying the length of alkoxy side chains (<em>n</em> = 4, 6, 8, 10, 16), a significant modulation of the solid-state photophysical properties was achieved. The emission colors of <strong>CV<em>n</em></strong> were engineered to span the visible range from yellow (<strong>CV8</strong>, 576 nm) through orange (<strong>CV6</strong>, 594 nm; <strong>CV10</strong>, 589 nm) to red (<strong>CV4</strong>, 632 nm; <strong>CV16</strong>, 671 nm). X-Ray diffraction and excited-state lifetime analyses revealed that <strong>CV4</strong>, <strong>CV6</strong> and <strong>CV16</strong> favour the formation of antiparallel dimers that promote excimer-like emission, whereas <strong>CV8</strong> can reversibly convert from a metastable polymorph that promotes excimer emission to a second polymorph that lacks the face-to-face stacking interactions responsible for excimer emission. Consequently, <strong>CV8</strong> displayed the most dramatic stimuli-responsive behavior, switching between a yellow-emitting monomer-like state (576 nm, <strong>CV8-Y</strong>) and a red-emitting excimeric state (<em>ca.</em> 660 nm, <strong>CV8-R</strong>) upon heating or grinding, with the process being reversible upon exposure to CH<small><sub>2</sub></small>Cl<small><sub>2</sub></small> vapor. This reversible, large spectral shift between two bright emissive states enabled “writing” and “erasing” of fluorescent patterns on surfaces.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 47","pages":" 19227-19235"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02736a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state light-emitting organic materials that can reversibly alter their optical properties in response to external stimuli have immense potential for applications in information storage, displays, and sensors. However, achieving large, readily perceptible spectral shifts with high reversibility and stability upon exposure to stimuli remains challenging. This study presents cyanovinylene-based dyes (CVn) exhibiting remarkable thermochromism and mechanochromism arising from the controlled formation of emissive excimers in the solid state. By tuning the intermolecular interactions, particularly π–π stacking and dipole–dipole interactions, through varying the length of alkoxy side chains (n = 4, 6, 8, 10, 16), a significant modulation of the solid-state photophysical properties was achieved. The emission colors of CVn were engineered to span the visible range from yellow (CV8, 576 nm) through orange (CV6, 594 nm; CV10, 589 nm) to red (CV4, 632 nm; CV16, 671 nm). X-Ray diffraction and excited-state lifetime analyses revealed that CV4, CV6 and CV16 favour the formation of antiparallel dimers that promote excimer-like emission, whereas CV8 can reversibly convert from a metastable polymorph that promotes excimer emission to a second polymorph that lacks the face-to-face stacking interactions responsible for excimer emission. Consequently, CV8 displayed the most dramatic stimuli-responsive behavior, switching between a yellow-emitting monomer-like state (576 nm, CV8-Y) and a red-emitting excimeric state (ca. 660 nm, CV8-R) upon heating or grinding, with the process being reversible upon exposure to CH2Cl2 vapor. This reversible, large spectral shift between two bright emissive states enabled “writing” and “erasing” of fluorescent patterns on surfaces.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors