X-TIME: Accelerating Large Tree Ensembles Inference for Tabular Data With Analog CAMs

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Giacomo Pedretti;John Moon;Pedro Bruel;Sergey Serebryakov;Ron M. Roth;Luca Buonanno;Archit Gajjar;Lei Zhao;Tobias Ziegler;Cong Xu;Martin Foltin;Paolo Faraboschi;Jim Ignowski;Catherine E. Graves
{"title":"X-TIME: Accelerating Large Tree Ensembles Inference for Tabular Data With Analog CAMs","authors":"Giacomo Pedretti;John Moon;Pedro Bruel;Sergey Serebryakov;Ron M. Roth;Luca Buonanno;Archit Gajjar;Lei Zhao;Tobias Ziegler;Cong Xu;Martin Foltin;Paolo Faraboschi;Jim Ignowski;Catherine E. Graves","doi":"10.1109/JXCDC.2024.3495634","DOIUrl":null,"url":null,"abstract":"Structured, or tabular, data are the most common format in data science. While deep learning models have proven formidable in learning from unstructured data such as images or speech, they are less accurate than simpler approaches when learning from tabular data. In contrast, modern tree-based machine learning (ML) models shine in extracting relevant information from structured data. An essential requirement in data science is to reduce model inference latency in cases where, for example, models are used in a closed loop with simulation to accelerate scientific discovery. However, the hardware acceleration community has mostly focused on deep neural networks and largely ignored other forms of ML. Previous work has described the use of an analog content addressable memory (CAM) component for efficiently mapping random forests (RFs). In this work, we develop an analog-digital architecture that implements a novel increased precision analog CAM and a programmable chip for inference of state-of-the-art tree-based ML models, such as eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and others. Thanks to hardware-aware training, X-TIME reaches state-of-the-art accuracy and \n<inline-formula> <tex-math>$119\\times $ </tex-math></inline-formula>\n higher throughput at \n<inline-formula> <tex-math>$9740\\times $ </tex-math></inline-formula>\n lower latency with \n<inline-formula> <tex-math>${\\gt }150\\times $ </tex-math></inline-formula>\n improved energy efficiency compared with a state-of-the-art GPU for models with up to 4096 trees and depth of 8, with a 19-W peak power consumption.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"116-124"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10753423","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10753423/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Structured, or tabular, data are the most common format in data science. While deep learning models have proven formidable in learning from unstructured data such as images or speech, they are less accurate than simpler approaches when learning from tabular data. In contrast, modern tree-based machine learning (ML) models shine in extracting relevant information from structured data. An essential requirement in data science is to reduce model inference latency in cases where, for example, models are used in a closed loop with simulation to accelerate scientific discovery. However, the hardware acceleration community has mostly focused on deep neural networks and largely ignored other forms of ML. Previous work has described the use of an analog content addressable memory (CAM) component for efficiently mapping random forests (RFs). In this work, we develop an analog-digital architecture that implements a novel increased precision analog CAM and a programmable chip for inference of state-of-the-art tree-based ML models, such as eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and others. Thanks to hardware-aware training, X-TIME reaches state-of-the-art accuracy and $119\times $ higher throughput at $9740\times $ lower latency with ${\gt }150\times $ improved energy efficiency compared with a state-of-the-art GPU for models with up to 4096 trees and depth of 8, with a 19-W peak power consumption.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信