Characterization of Drain-Induced Barrier Lowering in GaN HEMTs Using a Drain Current Injection Technique

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Björn Hult;Johan Bergsten;Ragnar Ferrand-Drake Del Castillo;Vanya Darakchieva;Anna Malmros;Hans Hjelmgren;Mattias Thorsell;Niklas Rorsman
{"title":"Characterization of Drain-Induced Barrier Lowering in GaN HEMTs Using a Drain Current Injection Technique","authors":"Björn Hult;Johan Bergsten;Ragnar Ferrand-Drake Del Castillo;Vanya Darakchieva;Anna Malmros;Hans Hjelmgren;Mattias Thorsell;Niklas Rorsman","doi":"10.1109/TED.2024.3489592","DOIUrl":null,"url":null,"abstract":"Assessing short channel effects (SCEs) is crucial in the high-frequency optimization of downscaled field-effect transistors (FETs) such as GaN high electron mobility transistors (HEMTs). Drain-induced barrier lowering (DIBL) is commonly used for quantifying the ability of the gate to modulate the drain-source current at high drain voltages. DIBL is traditionally extracted from the relative shift of the threshold voltage at different drain-source voltages. In this article, we propose a new method based on a drain current injection technique (DCIT) to assess DIBL. This method facilitates a direct measure of the threshold voltage over a wide range of drain-source voltages in a single measurement. The method is demonstrated and compared to the conventional method using AlGaN/GaN and InAlGaN HEMTs with a Fe-doped buffer and a C-doped AlGaN back-barrier, respectively. Furthermore, the impact of different gate lengths and GaN channel layer thicknesses is presented. The measurements are analyzed and discussed with supporting technology computer-aided design (TCAD) simulations. The proposed method facilitates a more general and detailed measurement of the DIBL for HEMTs.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"71 12","pages":"7383-7389"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10750141/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Assessing short channel effects (SCEs) is crucial in the high-frequency optimization of downscaled field-effect transistors (FETs) such as GaN high electron mobility transistors (HEMTs). Drain-induced barrier lowering (DIBL) is commonly used for quantifying the ability of the gate to modulate the drain-source current at high drain voltages. DIBL is traditionally extracted from the relative shift of the threshold voltage at different drain-source voltages. In this article, we propose a new method based on a drain current injection technique (DCIT) to assess DIBL. This method facilitates a direct measure of the threshold voltage over a wide range of drain-source voltages in a single measurement. The method is demonstrated and compared to the conventional method using AlGaN/GaN and InAlGaN HEMTs with a Fe-doped buffer and a C-doped AlGaN back-barrier, respectively. Furthermore, the impact of different gate lengths and GaN channel layer thicknesses is presented. The measurements are analyzed and discussed with supporting technology computer-aided design (TCAD) simulations. The proposed method facilitates a more general and detailed measurement of the DIBL for HEMTs.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信