Reprogrammed lipid metabolism in advanced resistant cancers: an upcoming therapeutic opportunity.

IF 4.6 Q1 ONCOLOGY
癌症耐药(英文) Pub Date : 2024-11-19 eCollection Date: 2024-01-01 DOI:10.20517/cdr.2024.131
Mario Cioce, Mariamena Arbitrio, Nicoletta Polerà, Emanuela Altomare, Antonia Rizzuto, Carmela De Marco, Vito Michele Fazio, Giuseppe Viglietto, Maria Lucibello
{"title":"Reprogrammed lipid metabolism in advanced resistant cancers: an upcoming therapeutic opportunity.","authors":"Mario Cioce, Mariamena Arbitrio, Nicoletta Polerà, Emanuela Altomare, Antonia Rizzuto, Carmela De Marco, Vito Michele Fazio, Giuseppe Viglietto, Maria Lucibello","doi":"10.20517/cdr.2024.131","DOIUrl":null,"url":null,"abstract":"<p><p>Resistance of cancer to therapy is the main challenge to its therapeutic management and is still an unsolved problem. Rearranged lipid metabolism is a strategy adopted by cancer cells to counteract adversity during their evolution toward aggressiveness and immune evasion. This relies on several mechanisms, ranging from altered metabolic pathways within cancer cells to evolved dynamic crosstalk between cancer cells and the tumor microenvironment (TME), with some cell populations at the forefront of metabolic reprogramming, thereby contributing to the resistance of the whole ecosystem during therapy. Unraveling these mechanisms may contribute to the development of more effective combinatorial therapy in resistant patients. This review highlights the alterations in lipid metabolism that contribute to cancer progression, with a focus on the potential clinical relevance of such findings for the management of therapy resistance.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"45"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11609178/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症耐药(英文)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20517/cdr.2024.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Resistance of cancer to therapy is the main challenge to its therapeutic management and is still an unsolved problem. Rearranged lipid metabolism is a strategy adopted by cancer cells to counteract adversity during their evolution toward aggressiveness and immune evasion. This relies on several mechanisms, ranging from altered metabolic pathways within cancer cells to evolved dynamic crosstalk between cancer cells and the tumor microenvironment (TME), with some cell populations at the forefront of metabolic reprogramming, thereby contributing to the resistance of the whole ecosystem during therapy. Unraveling these mechanisms may contribute to the development of more effective combinatorial therapy in resistant patients. This review highlights the alterations in lipid metabolism that contribute to cancer progression, with a focus on the potential clinical relevance of such findings for the management of therapy resistance.

重编程脂质代谢在晚期耐药癌症:一个即将到来的治疗机会。
肿瘤对治疗的抵抗是对其治疗管理的主要挑战,也是一个尚未解决的问题。脂质代谢的重排是癌细胞在向侵袭性和免疫逃避进化过程中对抗逆境的一种策略。这依赖于几种机制,从癌细胞内代谢途径的改变到癌细胞与肿瘤微环境(TME)之间进化的动态串扰,一些细胞群处于代谢重编程的前沿,从而在治疗期间促进整个生态系统的抵抗。解开这些机制可能有助于开发更有效的联合治疗耐药患者。这篇综述强调了导致癌症进展的脂质代谢的改变,重点是这些发现与治疗耐药管理的潜在临床相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信