CALML3-AS1 enhances malignancies and stemness of small cell lung cancer cells through interacting with DAXX protein and promoting GLUT4-mediated aerobic glycolysis.

IF 3.3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Guangxian Mao, Jixian Liu
{"title":"CALML3-AS1 enhances malignancies and stemness of small cell lung cancer cells through interacting with DAXX protein and promoting GLUT4-mediated aerobic glycolysis.","authors":"Guangxian Mao, Jixian Liu","doi":"10.1016/j.taap.2024.117177","DOIUrl":null,"url":null,"abstract":"<p><p>The lncRNA CALML3 antisense RNA 1 (CALML3-AS1) is a biomarker for various cancers, including non-small cell lung cancer (NSCLC). However, the role of CALM3-AS1 in small cell lung cancer (SCLC) is still unclear. Here, we found that the CALML3-AS1 was upregulated in SCLC tissues and cells. SCLC cells (NCI-H69 and NCI-H466 cells) were transfected with small interfering RNA of CALML-AS1 (si-CALML3-AS1) and Death domain-associated protein (DAXX) (si-DAXX) or an overexpression vector of CALML-AS1 (dCas9-CALML3-AS1) and DAXX (dCas9-DAXX). The results showed that silencing CALML3-AS1 inhibited SCLC cell proliferation, colony formation, migration, invasion, and spheroid formation, and reduced the expression of stemness marker proteins (Nanog. Oct4, and Lin28). Moreover, silencing CALML3-AS1 reduced glycolysis rate, glucose utilization, and lactate production, and decreased the levels of key glycolytic regulatory proteins (GLUT1, GLUT4, HK2, and PKM2) in SCLC cells, while overexpression of CALML3-AS1 promoted malignant growth and stemness and enhanced glucose transporters type 4 (GLUT4)-mediated aerobic glycolysis by interacting with DAXX in NCI-H69 and NCI-H466 cells. Silencing DAXX or GLUT4, or treatment with 2-Deoxy-d-glucose (2-DG, a glycolysis inhibitor) reversed the effects of CALML3-AS1 overexpression on aerobic glycolysis, malignant growth, and stemness of SCLC cells. Finally, NCI-H69 cells transfected with CALML3-AS1, sh-CALML3-AS1, and sh-DAXX lentiviral vectors were subcutaneously injected into nude mice to construct xenograft models. Knockdown of CALML3-AS1 or DAXX inhibited tumor growth in SCLC in vivo. In conclusion, CALML3-AS1, an oncogene, promotes the malignancy and stemness of SCLC cells by interacting with DAXX to enhance GLUT4-mediated aerobic glycolysis, thereby promoting SCLC progression.</p>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":" ","pages":"117177"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.taap.2024.117177","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The lncRNA CALML3 antisense RNA 1 (CALML3-AS1) is a biomarker for various cancers, including non-small cell lung cancer (NSCLC). However, the role of CALM3-AS1 in small cell lung cancer (SCLC) is still unclear. Here, we found that the CALML3-AS1 was upregulated in SCLC tissues and cells. SCLC cells (NCI-H69 and NCI-H466 cells) were transfected with small interfering RNA of CALML-AS1 (si-CALML3-AS1) and Death domain-associated protein (DAXX) (si-DAXX) or an overexpression vector of CALML-AS1 (dCas9-CALML3-AS1) and DAXX (dCas9-DAXX). The results showed that silencing CALML3-AS1 inhibited SCLC cell proliferation, colony formation, migration, invasion, and spheroid formation, and reduced the expression of stemness marker proteins (Nanog. Oct4, and Lin28). Moreover, silencing CALML3-AS1 reduced glycolysis rate, glucose utilization, and lactate production, and decreased the levels of key glycolytic regulatory proteins (GLUT1, GLUT4, HK2, and PKM2) in SCLC cells, while overexpression of CALML3-AS1 promoted malignant growth and stemness and enhanced glucose transporters type 4 (GLUT4)-mediated aerobic glycolysis by interacting with DAXX in NCI-H69 and NCI-H466 cells. Silencing DAXX or GLUT4, or treatment with 2-Deoxy-d-glucose (2-DG, a glycolysis inhibitor) reversed the effects of CALML3-AS1 overexpression on aerobic glycolysis, malignant growth, and stemness of SCLC cells. Finally, NCI-H69 cells transfected with CALML3-AS1, sh-CALML3-AS1, and sh-DAXX lentiviral vectors were subcutaneously injected into nude mice to construct xenograft models. Knockdown of CALML3-AS1 or DAXX inhibited tumor growth in SCLC in vivo. In conclusion, CALML3-AS1, an oncogene, promotes the malignancy and stemness of SCLC cells by interacting with DAXX to enhance GLUT4-mediated aerobic glycolysis, thereby promoting SCLC progression.

CALML3-AS1通过与DAXX蛋白相互作用,促进glut4介导的有氧糖酵解,增强小细胞肺癌细胞的恶性肿瘤和干性。
lncRNA CALML3反义RNA 1 (CALML3- as1)是多种癌症的生物标志物,包括非小细胞肺癌(NSCLC)。然而,CALM3-AS1在小细胞肺癌(SCLC)中的作用尚不清楚。在这里,我们发现CALML3-AS1在SCLC组织和细胞中上调。用calm - as1小干扰RNA (si-CALML3-AS1)和死亡结构域相关蛋白(DAXX) (si-DAXX)或过表达载体calm - as1 (dCas9-CALML3-AS1)和DAXX (dCas9-DAXX)转染SCLC细胞(NCI-H69和NCI-H466细胞)。结果表明,沉默CALML3-AS1可抑制SCLC细胞增殖、集落形成、迁移、侵袭和球体形成,并降低干性标记蛋白(Nanog)的表达。Oct4和Lin28)。此外,沉默CALML3-AS1降低了SCLC细胞的糖酵解速率、葡萄糖利用率和乳酸产量,降低了关键糖酵解调节蛋白(GLUT1、GLUT4、HK2和PKM2)的水平,而在NCI-H69和NCI-H466细胞中,过表达CALML3-AS1促进了恶性生长和干性,并通过与DAXX相互作用增强了葡萄糖转运蛋白4 (GLUT4)介导的有氧糖酵解。沉默DAXX或GLUT4,或用2-脱氧-d-葡萄糖(2-DG,一种糖酵解抑制剂)治疗可逆转CALML3-AS1过表达对SCLC细胞有氧糖酵解、恶性生长和干性的影响。最后,将转染CALML3-AS1、sh-CALML3-AS1和sh-DAXX慢病毒载体的NCI-H69细胞皮下注射到裸鼠体内,构建异种移植模型。下调CALML3-AS1或DAXX在体内抑制SCLC的肿瘤生长。综上所述,癌基因CALML3-AS1通过与DAXX相互作用,增强glut4介导的有氧糖酵解,从而促进SCLC的进展,从而促进SCLC细胞的恶性和干性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
2.60%
发文量
309
审稿时长
32 days
期刊介绍: Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products. Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged. Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信