Development of a dual-spectroscopic system to rapidly measure diisopropyl methyl phosphonate (DIMP) decomposition and temperature in a reactive powder environment.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Preetom Borah, Milad Alemohammad, Mark Foster, Timothy P Weihs
{"title":"Development of a dual-spectroscopic system to rapidly measure diisopropyl methyl phosphonate (DIMP) decomposition and temperature in a reactive powder environment.","authors":"Preetom Borah, Milad Alemohammad, Mark Foster, Timothy P Weihs","doi":"10.1063/5.0233744","DOIUrl":null,"url":null,"abstract":"<p><p>The development of systems to measure and optimize emerging energetic material performance is critical for Chemical Warfare Agent (CWA) defeat. In order to assess composite metal powder efficacy on CWA simulant defeat, this study documents a combination of two spectroscopic systems designed to monitor the decomposition of a CWA simulant and temperature rises due to combusting metal powders simultaneously. The first system is a custom benchtop Polygonal Rotating Mirror Infrared Spectrometer (PRiMIRS) incorporating a fully customizable sample cell to observe the decomposition of Diisopropyl Methyl Phosphonate (DIMP) as it interacts with combusting composite metal particles. The second is a tunable diode laser absorption spectroscopy (TDLAS) used to monitor increases in background gas temperatures as the composite metal powders combust. The PRiMIRS system demonstrates a very high signal to noise ratio (SNR) at slow timescales (Hz), reasonable SNR when operating at faster timescales (100 Hz), and capabilities of resolving spectral features with a FWHM resolution of 15 cm-1. TDLAS was able to monitor temperature rises between room temperature and 230 ± 5 °C while operating at 100 Hz. For testing, liquid DIMP was inserted in a preheated stainless steel (SS) cell to generate DIMP vapor and (Al-8Mg):Zr metal powders were ignited in a SS mount with a resistively heated nichrome wire at one end of the cell. The ignited particles propagated across the cell containing DIMP vapor. The path averaged gas temperature in the preheated SS cell rises rapidly (100 ms) and decays slowly (<5 s) but remains below 230 °C during particle combustion, a temperature at which the thermal decomposition of DIMP is not observed over similarly short timescales (seconds). However, when combusting particles were introduced to the DIMP vapor (heterogeneous environment), spectral signatures indicative of decomposition product formation, such as isopropyl-methyl phosphonate (IMP) and isopropyl alcohol, were observed within seconds.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0233744","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

The development of systems to measure and optimize emerging energetic material performance is critical for Chemical Warfare Agent (CWA) defeat. In order to assess composite metal powder efficacy on CWA simulant defeat, this study documents a combination of two spectroscopic systems designed to monitor the decomposition of a CWA simulant and temperature rises due to combusting metal powders simultaneously. The first system is a custom benchtop Polygonal Rotating Mirror Infrared Spectrometer (PRiMIRS) incorporating a fully customizable sample cell to observe the decomposition of Diisopropyl Methyl Phosphonate (DIMP) as it interacts with combusting composite metal particles. The second is a tunable diode laser absorption spectroscopy (TDLAS) used to monitor increases in background gas temperatures as the composite metal powders combust. The PRiMIRS system demonstrates a very high signal to noise ratio (SNR) at slow timescales (Hz), reasonable SNR when operating at faster timescales (100 Hz), and capabilities of resolving spectral features with a FWHM resolution of 15 cm-1. TDLAS was able to monitor temperature rises between room temperature and 230 ± 5 °C while operating at 100 Hz. For testing, liquid DIMP was inserted in a preheated stainless steel (SS) cell to generate DIMP vapor and (Al-8Mg):Zr metal powders were ignited in a SS mount with a resistively heated nichrome wire at one end of the cell. The ignited particles propagated across the cell containing DIMP vapor. The path averaged gas temperature in the preheated SS cell rises rapidly (100 ms) and decays slowly (<5 s) but remains below 230 °C during particle combustion, a temperature at which the thermal decomposition of DIMP is not observed over similarly short timescales (seconds). However, when combusting particles were introduced to the DIMP vapor (heterogeneous environment), spectral signatures indicative of decomposition product formation, such as isopropyl-methyl phosphonate (IMP) and isopropyl alcohol, were observed within seconds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信