Combined Raman spectroscopy and electrical transport measurements in ultra-high vacuum down to 3.7 K.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
K P Shchukin, M Hell, A Grüneis
{"title":"Combined Raman spectroscopy and electrical transport measurements in ultra-high vacuum down to 3.7 K.","authors":"K P Shchukin, M Hell, A Grüneis","doi":"10.1063/5.0242326","DOIUrl":null,"url":null,"abstract":"<p><p>An instrument for the simultaneous characterization of thin films by Raman spectroscopy and electronic transport down to 3.7 K has been designed and built. This setup allows for the in situ preparation of air-sensitive samples, their spectroscopic characterization by Raman spectroscopy with different laser lines and five-probe electronic transport measurements using sample plates with prefabricated contacts. The lowest temperatures that can be achieved on the sample are directly proven by measuring the superconducting transition of a niobium film. The temperature-dependent Raman shift and narrowing of the silicon F2g Raman line are shown. This experimental system is specially designed for in situ functionalization and optical spectroscopic and electron transport investigation of thin films. It allows for easy on-the-fly change of samples without the need to warm up the cryomanipulator.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0242326","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

An instrument for the simultaneous characterization of thin films by Raman spectroscopy and electronic transport down to 3.7 K has been designed and built. This setup allows for the in situ preparation of air-sensitive samples, their spectroscopic characterization by Raman spectroscopy with different laser lines and five-probe electronic transport measurements using sample plates with prefabricated contacts. The lowest temperatures that can be achieved on the sample are directly proven by measuring the superconducting transition of a niobium film. The temperature-dependent Raman shift and narrowing of the silicon F2g Raman line are shown. This experimental system is specially designed for in situ functionalization and optical spectroscopic and electron transport investigation of thin films. It allows for easy on-the-fly change of samples without the need to warm up the cryomanipulator.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信