Multi-layer transfer learning algorithm based on improved common spatial pattern for brain-computer interfaces.

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Zhuo Cai, Yunyuan Gao, Feng Fang, Yingchun Zhang, Shunlan Du
{"title":"Multi-layer transfer learning algorithm based on improved common spatial pattern for brain-computer interfaces.","authors":"Zhuo Cai, Yunyuan Gao, Feng Fang, Yingchun Zhang, Shunlan Du","doi":"10.1016/j.jneumeth.2024.110332","DOIUrl":null,"url":null,"abstract":"<p><p>In the application of brain-computer interface, the differences in imaging methods and brain structure between subjects hinder the effectiveness of decoding algorithms when applied on different subjects. Transfer learning has been designed to solve this problem. There have been many applications of transfer learning in motor imagery (MI), however the effectiveness is still limited due to the inconsistent domain alignment, lack of prominent data features and allocation of weights in trails. In this paper, a Multi-layer transfer learning algorithm based on improved Common Spatial Patterns (MTICSP) was proposed to solve these problems. Firstly, the source domain data and target domain data were aligned by Target Alignment (TA)method to reduce distribution differences between subjects. Secondly, the mean covariance matrix of the two classes was re-weighted by calculating the distance between the covariance matrix of each trial in the source domain and the target domain. Thirdly, the improved Common Spatial Patterns (CSP) by introducing regularization coefficient was proposed to further reduce the difference between source domain and target domain to extract features. Finally, the feature blocks of the source domain and target domain were aligned again by Joint Distribution Adaptation (JDA) method. Experiments on two public datasets in two transfer paradigms multi-source to single-target (MTS) and single-source to single-target (STS) verified the effectiveness of our proposed method. The MTS and STS in the 5-person dataset were 80.21% and 77.58%, respectively, and 80.10% and 73.91%, respectively, in the 9-person dataset. Experimental results also showed that the proposed algorithm was superior to other state-of-the-art algorithms. In addition, the generalization ability of our algorithm MTICSP was validated on the fatigue EEG dataset collected by ourselves, and obtained 94.83% and 87.41% accuracy in MTS and STS experiments respectively. The proposed method combines improved CSP with transfer learning to extract the features of source and target domains effectively, providing a new method for combining transfer learning with motor imagination.</p>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":" ","pages":"110332"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jneumeth.2024.110332","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

In the application of brain-computer interface, the differences in imaging methods and brain structure between subjects hinder the effectiveness of decoding algorithms when applied on different subjects. Transfer learning has been designed to solve this problem. There have been many applications of transfer learning in motor imagery (MI), however the effectiveness is still limited due to the inconsistent domain alignment, lack of prominent data features and allocation of weights in trails. In this paper, a Multi-layer transfer learning algorithm based on improved Common Spatial Patterns (MTICSP) was proposed to solve these problems. Firstly, the source domain data and target domain data were aligned by Target Alignment (TA)method to reduce distribution differences between subjects. Secondly, the mean covariance matrix of the two classes was re-weighted by calculating the distance between the covariance matrix of each trial in the source domain and the target domain. Thirdly, the improved Common Spatial Patterns (CSP) by introducing regularization coefficient was proposed to further reduce the difference between source domain and target domain to extract features. Finally, the feature blocks of the source domain and target domain were aligned again by Joint Distribution Adaptation (JDA) method. Experiments on two public datasets in two transfer paradigms multi-source to single-target (MTS) and single-source to single-target (STS) verified the effectiveness of our proposed method. The MTS and STS in the 5-person dataset were 80.21% and 77.58%, respectively, and 80.10% and 73.91%, respectively, in the 9-person dataset. Experimental results also showed that the proposed algorithm was superior to other state-of-the-art algorithms. In addition, the generalization ability of our algorithm MTICSP was validated on the fatigue EEG dataset collected by ourselves, and obtained 94.83% and 87.41% accuracy in MTS and STS experiments respectively. The proposed method combines improved CSP with transfer learning to extract the features of source and target domains effectively, providing a new method for combining transfer learning with motor imagination.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信