Zhuo Cai, Yunyuan Gao, Feng Fang, Yingchun Zhang, Shunlan Du
{"title":"Multi-layer transfer learning algorithm based on improved common spatial pattern for brain-computer interfaces.","authors":"Zhuo Cai, Yunyuan Gao, Feng Fang, Yingchun Zhang, Shunlan Du","doi":"10.1016/j.jneumeth.2024.110332","DOIUrl":null,"url":null,"abstract":"<p><p>In the application of brain-computer interface, the differences in imaging methods and brain structure between subjects hinder the effectiveness of decoding algorithms when applied on different subjects. Transfer learning has been designed to solve this problem. There have been many applications of transfer learning in motor imagery (MI), however the effectiveness is still limited due to the inconsistent domain alignment, lack of prominent data features and allocation of weights in trails. In this paper, a Multi-layer transfer learning algorithm based on improved Common Spatial Patterns (MTICSP) was proposed to solve these problems. Firstly, the source domain data and target domain data were aligned by Target Alignment (TA)method to reduce distribution differences between subjects. Secondly, the mean covariance matrix of the two classes was re-weighted by calculating the distance between the covariance matrix of each trial in the source domain and the target domain. Thirdly, the improved Common Spatial Patterns (CSP) by introducing regularization coefficient was proposed to further reduce the difference between source domain and target domain to extract features. Finally, the feature blocks of the source domain and target domain were aligned again by Joint Distribution Adaptation (JDA) method. Experiments on two public datasets in two transfer paradigms multi-source to single-target (MTS) and single-source to single-target (STS) verified the effectiveness of our proposed method. The MTS and STS in the 5-person dataset were 80.21% and 77.58%, respectively, and 80.10% and 73.91%, respectively, in the 9-person dataset. Experimental results also showed that the proposed algorithm was superior to other state-of-the-art algorithms. In addition, the generalization ability of our algorithm MTICSP was validated on the fatigue EEG dataset collected by ourselves, and obtained 94.83% and 87.41% accuracy in MTS and STS experiments respectively. The proposed method combines improved CSP with transfer learning to extract the features of source and target domains effectively, providing a new method for combining transfer learning with motor imagination.</p>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":" ","pages":"110332"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jneumeth.2024.110332","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In the application of brain-computer interface, the differences in imaging methods and brain structure between subjects hinder the effectiveness of decoding algorithms when applied on different subjects. Transfer learning has been designed to solve this problem. There have been many applications of transfer learning in motor imagery (MI), however the effectiveness is still limited due to the inconsistent domain alignment, lack of prominent data features and allocation of weights in trails. In this paper, a Multi-layer transfer learning algorithm based on improved Common Spatial Patterns (MTICSP) was proposed to solve these problems. Firstly, the source domain data and target domain data were aligned by Target Alignment (TA)method to reduce distribution differences between subjects. Secondly, the mean covariance matrix of the two classes was re-weighted by calculating the distance between the covariance matrix of each trial in the source domain and the target domain. Thirdly, the improved Common Spatial Patterns (CSP) by introducing regularization coefficient was proposed to further reduce the difference between source domain and target domain to extract features. Finally, the feature blocks of the source domain and target domain were aligned again by Joint Distribution Adaptation (JDA) method. Experiments on two public datasets in two transfer paradigms multi-source to single-target (MTS) and single-source to single-target (STS) verified the effectiveness of our proposed method. The MTS and STS in the 5-person dataset were 80.21% and 77.58%, respectively, and 80.10% and 73.91%, respectively, in the 9-person dataset. Experimental results also showed that the proposed algorithm was superior to other state-of-the-art algorithms. In addition, the generalization ability of our algorithm MTICSP was validated on the fatigue EEG dataset collected by ourselves, and obtained 94.83% and 87.41% accuracy in MTS and STS experiments respectively. The proposed method combines improved CSP with transfer learning to extract the features of source and target domains effectively, providing a new method for combining transfer learning with motor imagination.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.