Wencong Yang, Shurong Tian, Yi-Fan Du, Xian-Liang Zeng, Jia-Jing Liang, Wen-Jian Lan, Hang Li
{"title":"Genome Mining of the Marine-Derived Fungus <i>Trichoderma erinaceum</i> F1-1 Unearths Bergamotene-Type Sesquiterpenoids.","authors":"Wencong Yang, Shurong Tian, Yi-Fan Du, Xian-Liang Zeng, Jia-Jing Liang, Wen-Jian Lan, Hang Li","doi":"10.1021/acs.jnatprod.4c00905","DOIUrl":null,"url":null,"abstract":"<p><p>Terpenoids are a vast group of natural products known for their remarkable biological properties and structural diversity. UbiA terpene synthases are increasingly recognized for producing various terpenoids. In this study, we identified a biosynthetic gene cluster (<i>bgt</i>) encoding a UbiA terpene synthase BgtA in the genome of the marine-derived fungus <i>Trichoderma erinaceum</i> F1-1. The gene <i>bgtA</i> was validated to encode the biosynthesis of (-)-α-<i>trans</i>-bergamotene (<b>1</b>). Heterologous expression of the <i>bgt</i> gene cluster in the characterized host <i>Aspergillus nidulans</i> LO8030 activated the biosynthetic pathway, leading to the isolation of eight previously undocumented bergamotene-derived sesquiterpenoids (<b>2</b>-<b>9</b>). Their structures, including the absolute configurations, were elucidated by a combination of spectroscopic analysis, ECD spectra, chemical hydrolysis, single-crystal X-ray diffraction, and biosynthetic considerations. We further demonstrated that the production of these structurally intricate sesquiterpenoids in heterologous expression is attributable to the concerted action of the UbiA terpene synthase BgtA, the cytochrome P450 BgtC, and endogenous enzymes. This study underscores the immense biosynthetic potential of fungal UbiA terpene synthase gene clusters and shows genome mining is a promising strategy for the discovery of novel terpenoids from fungi.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c00905","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Terpenoids are a vast group of natural products known for their remarkable biological properties and structural diversity. UbiA terpene synthases are increasingly recognized for producing various terpenoids. In this study, we identified a biosynthetic gene cluster (bgt) encoding a UbiA terpene synthase BgtA in the genome of the marine-derived fungus Trichoderma erinaceum F1-1. The gene bgtA was validated to encode the biosynthesis of (-)-α-trans-bergamotene (1). Heterologous expression of the bgt gene cluster in the characterized host Aspergillus nidulans LO8030 activated the biosynthetic pathway, leading to the isolation of eight previously undocumented bergamotene-derived sesquiterpenoids (2-9). Their structures, including the absolute configurations, were elucidated by a combination of spectroscopic analysis, ECD spectra, chemical hydrolysis, single-crystal X-ray diffraction, and biosynthetic considerations. We further demonstrated that the production of these structurally intricate sesquiterpenoids in heterologous expression is attributable to the concerted action of the UbiA terpene synthase BgtA, the cytochrome P450 BgtC, and endogenous enzymes. This study underscores the immense biosynthetic potential of fungal UbiA terpene synthase gene clusters and shows genome mining is a promising strategy for the discovery of novel terpenoids from fungi.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.