Biomass conversion strategies and wastewater reuse: a deep focus on hydrothermal liquefaction as a circular economy approach

IF 5.2 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Wanda Gugliucci, Olimpia Pepe, Valeria Ventorino
{"title":"Biomass conversion strategies and wastewater reuse: a deep focus on hydrothermal liquefaction as a circular economy approach","authors":"Wanda Gugliucci,&nbsp;Olimpia Pepe,&nbsp;Valeria Ventorino","doi":"10.1186/s40538-024-00710-w","DOIUrl":null,"url":null,"abstract":"<div><p>A wide variety of eco-friendly and at <i>zero waste</i> techniques are developed for biomass conversion and valorization of its residues and by-products such as water fraction and organic residues which could be further utilized. The wastewater reuse is one of the best strategies for water security, sustainability, and resilience. To date, the municipal wastewater was the most widely used, nowadays the innovative technologies for biomass conversion and energy production allow the recovery of wastewater with better and safer features than the municipal effluents. Depending on the moisture content of the starting feedstock, the hydrothermal liquefaction process (HTL) generates also up to 95% of wastewater (HTL–WW) generally rich in nitrogen, phosphorus, and sulfate as well as micronutrients and minerals. Although it is currently recycled through various biological systems such as microalgae cultivation and anaerobic digestion, the possibility of using the wastewater from HTL process as irrigation water for agricultural purpose is discussed representing a source of crop nutrients for the high amount of organic and inorganic compounds and a new approach in contributing to reduce the increasing pressure on freshwater resources.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00710-w","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00710-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A wide variety of eco-friendly and at zero waste techniques are developed for biomass conversion and valorization of its residues and by-products such as water fraction and organic residues which could be further utilized. The wastewater reuse is one of the best strategies for water security, sustainability, and resilience. To date, the municipal wastewater was the most widely used, nowadays the innovative technologies for biomass conversion and energy production allow the recovery of wastewater with better and safer features than the municipal effluents. Depending on the moisture content of the starting feedstock, the hydrothermal liquefaction process (HTL) generates also up to 95% of wastewater (HTL–WW) generally rich in nitrogen, phosphorus, and sulfate as well as micronutrients and minerals. Although it is currently recycled through various biological systems such as microalgae cultivation and anaerobic digestion, the possibility of using the wastewater from HTL process as irrigation water for agricultural purpose is discussed representing a source of crop nutrients for the high amount of organic and inorganic compounds and a new approach in contributing to reduce the increasing pressure on freshwater resources.

Graphical abstract

生物质转化策略和废水再利用:深度关注热液液化作为一种循环经济方法
开发了各种各样的生态友好和零废物技术,用于生物质转化及其残留物和副产品(如水馏分和有机残留物)的增值,这些可以进一步利用。废水回用是水安全、可持续性和复原力的最佳战略之一。迄今为止,城市污水是最广泛使用的,如今,生物质转化和能源生产的创新技术使废水的回收具有比城市污水更好和更安全的特点。根据起始原料的水分含量,水热液化过程(HTL)也产生高达95%的废水(HTL - ww),通常富含氮、磷、硫酸盐以及微量营养素和矿物质。虽然目前通过微藻培养和厌氧消化等各种生物系统进行循环利用,但本文讨论了将HTL工艺废水用作农业灌溉用水的可能性,这代表了大量有机和无机化合物的作物营养来源,也是一种有助于减少淡水资源日益增加的压力的新方法。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical and Biological Technologies in Agriculture
Chemical and Biological Technologies in Agriculture Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.80
自引率
3.00%
发文量
83
审稿时长
15 weeks
期刊介绍: Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture. This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population. Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信