Solution-Processed CuSCN Films With Low Toxic and Environmentally Friendly Solvent for Efficient All-Inorganic CuInS₂ Solar Cells

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiajin Kuang;Rong Liu;Wenbo Cao;Yang Wang;Chong Chen;Junwei Chen;Mingtai Wang
{"title":"Solution-Processed CuSCN Films With Low Toxic and Environmentally Friendly Solvent for Efficient All-Inorganic CuInS₂ Solar Cells","authors":"Jiajin Kuang;Rong Liu;Wenbo Cao;Yang Wang;Chong Chen;Junwei Chen;Mingtai Wang","doi":"10.1109/LED.2024.3477430","DOIUrl":null,"url":null,"abstract":"Indium copper sulfide (CuInS\n<inline-formula> <tex-math>$_{{2}}\\text {)}$ </tex-math></inline-formula>\n has attracted considerable attention as an efficient and stable photon-absorbing material for inorganic heterojunction solar cells. Hole transport layer (HTL), serving as a hole extracting material, plays an integral role in determining device performance of solar cells. Here, the high-quality CuSCN film has been prepared successfully by using green mixed solution (dimethyl sulfoxide and dipropyl sulfide) and employed firstly to fabricate efficient CuInS2 planar heterojunction (PHJ) solar cells. The morphology, absorption properties, crystallinity and crystal orientation of CuSCN film are investigated by scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis) and X-ray diffraction (XRD) techniques. Results show the CuSCN film layer (\n<inline-formula> <tex-math>${T}_{c} = 100~^{\\text {o}}$ </tex-math></inline-formula>\nC) suggests good crystallinity and superior transmittance. The champion CuInS2 PHJ solar cell with inorganic CuSCN HTM achieves an inspiring power conversion efficiency (\n<inline-formula> <tex-math>$\\eta \\text {)}$ </tex-math></inline-formula>\n of 5.0% with the highest fill factor (FF) of 65.66% in the similar photovoltaic devices.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2307-2310"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713343/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Indium copper sulfide (CuInS $_{{2}}\text {)}$ has attracted considerable attention as an efficient and stable photon-absorbing material for inorganic heterojunction solar cells. Hole transport layer (HTL), serving as a hole extracting material, plays an integral role in determining device performance of solar cells. Here, the high-quality CuSCN film has been prepared successfully by using green mixed solution (dimethyl sulfoxide and dipropyl sulfide) and employed firstly to fabricate efficient CuInS2 planar heterojunction (PHJ) solar cells. The morphology, absorption properties, crystallinity and crystal orientation of CuSCN film are investigated by scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-vis) and X-ray diffraction (XRD) techniques. Results show the CuSCN film layer ( ${T}_{c} = 100~^{\text {o}}$ C) suggests good crystallinity and superior transmittance. The champion CuInS2 PHJ solar cell with inorganic CuSCN HTM achieves an inspiring power conversion efficiency ( $\eta \text {)}$ of 5.0% with the highest fill factor (FF) of 65.66% in the similar photovoltaic devices.
高效全无机CuInS 2太阳能电池用低毒环保溶剂溶液处理CuSCN薄膜
硫化铟铜(CuInS $_{{2}}\text{)}}$作为一种高效稳定的无机异质结太阳能电池光子吸收材料受到了广泛关注。空穴传输层(HTL)作为一种空穴提取材料,在太阳能电池器件性能中起着不可或缺的作用。本文采用绿色混合溶液(二甲基亚砜和二丙基硫化物)制备了高质量的CuSCN薄膜,并首次用于制备高效的CuInS2平面异质结(PHJ)太阳能电池。采用扫描电子显微镜(SEM)、紫外可见光谱(UV-vis)和x射线衍射(XRD)技术对CuSCN薄膜的形貌、吸收性能、结晶度和晶体取向进行了研究。结果表明,CuSCN薄膜层(${T}_{c} = 100~^{\text {o}}$ c)结晶度好,透光性好。无机CuSCN HTM的冠军CuInS2 PHJ太阳能电池实现了令人鼓舞的5.0%的功率转换效率($\eta \text{)}$,在同类光伏器件中最高的填充因子(FF)为65.66%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信