Spectral operator representations

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Austin Zadoks, Antimo Marrazzo, Nicola Marzari
{"title":"Spectral operator representations","authors":"Austin Zadoks, Antimo Marrazzo, Nicola Marzari","doi":"10.1038/s41524-024-01446-9","DOIUrl":null,"url":null,"abstract":"<p>Machine learning in atomistic materials science has grown to become a powerful tool, with most approaches focusing on atomic geometry, typically decomposed into local atomic environments. This approach, while well-suited for machine-learned interatomic potentials, is conceptually at odds with learning complex intrinsic properties of materials, often driven by spectral properties commonly represented in reciprocal space (e.g., band gaps or mobilities) which cannot be readily partitioned in real space. For such applications, methods that represent the electronic rather than the atomic structure could be more promising. In this work, we present a general framework focused on electronic-structure descriptors that take advantage of the natural symmetries and inherent interpretability of physical models. We apply this framework first to material similarity and then to accelerated screening, where a model trained on 217 materials correctly labels 75% of entries in the Materials Cloud 3D database, which meet common screening criteria for promising transparent-conducting materials.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"37 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01446-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning in atomistic materials science has grown to become a powerful tool, with most approaches focusing on atomic geometry, typically decomposed into local atomic environments. This approach, while well-suited for machine-learned interatomic potentials, is conceptually at odds with learning complex intrinsic properties of materials, often driven by spectral properties commonly represented in reciprocal space (e.g., band gaps or mobilities) which cannot be readily partitioned in real space. For such applications, methods that represent the electronic rather than the atomic structure could be more promising. In this work, we present a general framework focused on electronic-structure descriptors that take advantage of the natural symmetries and inherent interpretability of physical models. We apply this framework first to material similarity and then to accelerated screening, where a model trained on 217 materials correctly labels 75% of entries in the Materials Cloud 3D database, which meet common screening criteria for promising transparent-conducting materials.

Abstract Image

谱算子表示
原子材料科学中的机器学习已经发展成为一种强大的工具,大多数方法都集中在原子几何上,通常分解为局部原子环境。这种方法虽然非常适合机器学习原子间电位,但在概念上与学习材料的复杂内在特性不一致,通常是由通常在互反空间中表示的光谱特性(例如,带隙或迁移率)驱动的,这些特性不能在实际空间中轻易划分。对于这样的应用,代表电子结构而不是原子结构的方法可能更有前途。在这项工作中,我们提出了一个总体框架,专注于利用物理模型的自然对称性和固有可解释性的电子结构描述符。我们首先将此框架应用于材料相似性,然后加速筛选,其中在217种材料上训练的模型正确标记了材料云3D数据库中75%的条目,这些条目符合有希望的透明导电材料的常见筛选标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信