Dynamic mesophase transition induces anomalous suppressed and anisotropic phonon thermal transport

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Linfeng Yu, Kexin Dong, Qi Yang, Yi Zhang, Zheyong Fan, Xiong Zheng, Huimin Wang, Zhenzhen Qin, Guangzhao Qin
{"title":"Dynamic mesophase transition induces anomalous suppressed and anisotropic phonon thermal transport","authors":"Linfeng Yu, Kexin Dong, Qi Yang, Yi Zhang, Zheyong Fan, Xiong Zheng, Huimin Wang, Zhenzhen Qin, Guangzhao Qin","doi":"10.1038/s41524-024-01442-z","DOIUrl":null,"url":null,"abstract":"<p>The physical/chemical properties undergo significant transformations in the different states arising from phase transition. However, due to the lack of a dynamic perspective, transitional mesophases are largely underexamined, constrained by the high resource burden of first principles. Here, using molecular dynamics (MD) simulations empowered by the machine-learning potential, we proffer an innovative paradigm for phase transition: regulating the thermal transport properties <i>via</i> the transitional mesophase triggered by a uniaxial force field. We investigate the mechanical, electrical, and thermal transport properties of the two-dimensional carbon allotrope of Janus-graphene with strain-engineered phase transition. Notably, we found that the transitional mesophase significantly suppresses the thermal conductivity and induces strong anisotropy near the phase transition point. Through machine-learning-driven MD simulations, we achieved high-precision atomic-level simulations of Janus-graphene. The results show that thermal vibration-induced intermediate amorphous or interfacial phases induce strong and anisotropic interfacial thermal resistance. The investigation not only endows us with a novel perspective on mesophases during phase transitions but also enhances our holistic comprehension of the evolution of material properties.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"25 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01442-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The physical/chemical properties undergo significant transformations in the different states arising from phase transition. However, due to the lack of a dynamic perspective, transitional mesophases are largely underexamined, constrained by the high resource burden of first principles. Here, using molecular dynamics (MD) simulations empowered by the machine-learning potential, we proffer an innovative paradigm for phase transition: regulating the thermal transport properties via the transitional mesophase triggered by a uniaxial force field. We investigate the mechanical, electrical, and thermal transport properties of the two-dimensional carbon allotrope of Janus-graphene with strain-engineered phase transition. Notably, we found that the transitional mesophase significantly suppresses the thermal conductivity and induces strong anisotropy near the phase transition point. Through machine-learning-driven MD simulations, we achieved high-precision atomic-level simulations of Janus-graphene. The results show that thermal vibration-induced intermediate amorphous or interfacial phases induce strong and anisotropic interfacial thermal resistance. The investigation not only endows us with a novel perspective on mesophases during phase transitions but also enhances our holistic comprehension of the evolution of material properties.

Abstract Image

动态中间相变引起了异常抑制和各向异性声子热输运
在相变引起的不同状态下,其物理/化学性质发生了显著的变化。然而,由于缺乏动态的观点,过渡中间阶段在很大程度上没有得到充分的研究,受到第一原则的高资源负担的限制。在这里,利用机器学习潜力的分子动力学(MD)模拟,我们提供了一个相变的创新范例:通过由单轴力场触发的过渡中间相调节热输运性质。我们研究了具有应变工程相变的二维碳同素异形体janus -石墨烯的机械、电和热输运性质。值得注意的是,我们发现过渡中间相显著抑制了热导率,并在相变点附近引起了强的各向异性。通过机器学习驱动的MD模拟,我们实现了janus -石墨烯的高精度原子级模拟。结果表明,热振动诱导的中间非晶相或界面相产生了较强的各向异性界面热阻。这项研究不仅使我们对相变过程中的中间相有了新的认识,而且增强了我们对材料性质演变的整体理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信