An interpretable data analytics-based energy benchmarking process for supporting retrofit decisions in large residential building stocks

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Marco Savino Piscitelli, Giuseppe Razzano, Giacomo Buscemi, Alfonso Capozzoli
{"title":"An interpretable data analytics-based energy benchmarking process for supporting retrofit decisions in large residential building stocks","authors":"Marco Savino Piscitelli,&nbsp;Giuseppe Razzano,&nbsp;Giacomo Buscemi,&nbsp;Alfonso Capozzoli","doi":"10.1016/j.enbuild.2024.115115","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced energy benchmarking in residential buildings, using data-driven modeling, provides a fast, accurate, and systematic approach to assessing energy performance and comparing it with reference standards or targets. This process is essential for identifying opportunities to improve energy efficiency and for shaping effective energy retrofit strategies. However, building professionals often face barriers to adopting these tools, mainly due to the complexity and limited interpretability of data-driven models, which can negatively affect decision-making.</div><div>In order to contribute in addressing these issues, this study combines data-driven modeling with Explainable Artificial Intelligence (XAI) techniques to advance energy benchmarking analysis in residential buildings and enhance their usability by also non-expert users.</div><div>The proposed process focuses on estimating primary energy demand for space heating and domestic hot water in residential building units, extracting knowledge from about 49,000 Energy Performance Certificates (EPCs) issued in the Piedmont Region, Italy. The effectiveness of five machine learning algorithms is assessed to select the most suitable estimation model. Then to ensure the trustworthiness of the selected model, a XAI layer is implemented to identify and remove input variable domain regions that demonstrated to be critical for the robustness of the inference mechanism learnt in the training phase. Moreover, the study assesses the model capability to evaluate building energy performance, examining both the current state and potential scenarios for energy retrofitting. A second XAI layer is then introduced to provide local explanations for model estimations of both pre- and post-retrofit conditions of a building. The final aim is to enable an external benchmarking analysis, by extracting from the analysed EPCs reference groups of similar buildings, that facilitate a performance comparison for the investigated retrofit scenarios. This energy benchmarking process promotes transparent and informed decision-making, aiming to instill confidence in final users when leveraging data-driven models for energy planning in the building sector.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"328 ","pages":"Article 115115"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778824012313","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced energy benchmarking in residential buildings, using data-driven modeling, provides a fast, accurate, and systematic approach to assessing energy performance and comparing it with reference standards or targets. This process is essential for identifying opportunities to improve energy efficiency and for shaping effective energy retrofit strategies. However, building professionals often face barriers to adopting these tools, mainly due to the complexity and limited interpretability of data-driven models, which can negatively affect decision-making.
In order to contribute in addressing these issues, this study combines data-driven modeling with Explainable Artificial Intelligence (XAI) techniques to advance energy benchmarking analysis in residential buildings and enhance their usability by also non-expert users.
The proposed process focuses on estimating primary energy demand for space heating and domestic hot water in residential building units, extracting knowledge from about 49,000 Energy Performance Certificates (EPCs) issued in the Piedmont Region, Italy. The effectiveness of five machine learning algorithms is assessed to select the most suitable estimation model. Then to ensure the trustworthiness of the selected model, a XAI layer is implemented to identify and remove input variable domain regions that demonstrated to be critical for the robustness of the inference mechanism learnt in the training phase. Moreover, the study assesses the model capability to evaluate building energy performance, examining both the current state and potential scenarios for energy retrofitting. A second XAI layer is then introduced to provide local explanations for model estimations of both pre- and post-retrofit conditions of a building. The final aim is to enable an external benchmarking analysis, by extracting from the analysed EPCs reference groups of similar buildings, that facilitate a performance comparison for the investigated retrofit scenarios. This energy benchmarking process promotes transparent and informed decision-making, aiming to instill confidence in final users when leveraging data-driven models for energy planning in the building sector.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信