AlphaFold 3.0 Prediction Reveals Stronger Interaction between Oleic Acid and Colipase than Palmitic Acid

IF 5.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Liyou Zheng, Xiaoting Zhou, Zhan Ye, Tao Zhang
{"title":"AlphaFold 3.0 Prediction Reveals Stronger Interaction between Oleic Acid and Colipase than Palmitic Acid","authors":"Liyou Zheng, Xiaoting Zhou, Zhan Ye, Tao Zhang","doi":"10.1021/acs.jafc.4c06134","DOIUrl":null,"url":null,"abstract":"The interaction between colipase and lipase is known to be crucial for lipid digestion, but the roles of other factors remain unclear. This study explores the dynamics of pancreatic lipase hydrolysis facilitated by colipase, with a focus on the regulatory roles of fatty acids and calcium ions. Using computational modeling, including insights from AlphaFold 3.0, we elucidate the structural interactions essential for hydrolysis activity. The prediction highlights the significant role of calcium ions in altering the interaction between fatty acids and the lipase–colipase complex, thereby changing catalytic efficiency. We further demonstrate that slower hydrolysis rates are associated with a stronger binding affinity between colipase and oleic acid, as well as the occupation of the lipase catalytic pocket by oleic acid in the presence of calcium ions. The AlphaFold predictions provide a robust framework for experimental validation and potential applications. These findings offer deeper insights into dietary lipid digestion and highlight potential avenues for interventions addressing lipid digestion in malnutrition.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"18 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c06134","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction between colipase and lipase is known to be crucial for lipid digestion, but the roles of other factors remain unclear. This study explores the dynamics of pancreatic lipase hydrolysis facilitated by colipase, with a focus on the regulatory roles of fatty acids and calcium ions. Using computational modeling, including insights from AlphaFold 3.0, we elucidate the structural interactions essential for hydrolysis activity. The prediction highlights the significant role of calcium ions in altering the interaction between fatty acids and the lipase–colipase complex, thereby changing catalytic efficiency. We further demonstrate that slower hydrolysis rates are associated with a stronger binding affinity between colipase and oleic acid, as well as the occupation of the lipase catalytic pocket by oleic acid in the presence of calcium ions. The AlphaFold predictions provide a robust framework for experimental validation and potential applications. These findings offer deeper insights into dietary lipid digestion and highlight potential avenues for interventions addressing lipid digestion in malnutrition.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信