The influence of synergistic antibacterial saponins, sapindoside A and B, on the fatty acid composition and membrane properties of Micrococcus luteus.

IF 3.3 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Minping Wei, Qingmin Chen, Yanwei Zhou, Huaimao Tie
{"title":"The influence of synergistic antibacterial saponins, sapindoside A and B, on the fatty acid composition and membrane properties of Micrococcus luteus.","authors":"Minping Wei, Qingmin Chen, Yanwei Zhou, Huaimao Tie","doi":"10.1002/jsfa.14056","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Saponins from Sapindus mukorossi Gaertn. are natural surfactants with excellent foaming ability, biodegradability, and safety. However, their applications in food have been rarely reported. The aim of this work was therefore to investigate the synergistic antibacterial roles of a combination of sapindoside A and B (S<sub>AB</sub>), which are major components of Sapindus saponins, in altering the properties and fatty acids (FAs) in the membrane of Micrococcus luteus, which has been identified as an opportunistic pathogen.</p><p><strong>Results: </strong>Microscopy showed that S<sub>AB</sub> destroyed the integrity of the cell membrane and internal structures and led to the leakage of the cell content. Further analysis indicated that the ratio of saturated FAs to unsaturated FAs was increased significantly, and the membrane fluidity, permeability, and integrity changed substantially. Although sapindoside A and B exerted similar synergistic effects on fatty acid composition and membrane fluidity, sapindoside A had a greater impact on membrane permeability and integrity, consistent with density functional theory.</p><p><strong>Conclusion: </strong>The activity of M. luteus was inhibited more effectively by S<sub>AB</sub> than sapindoside A or B alone. It attacked cell membrane FAs, resulting in changing membrane fluidity, permeability, and integrity, eventually causing leakage of the cell contents, and ultimately cell death. This helped to provide evidence for the use of S<sub>AB</sub> as a natural antibacterial detergent additive in the food industry. © 2024 Society of Chemical Industry.</p>","PeriodicalId":17725,"journal":{"name":"Journal of the Science of Food and Agriculture","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Science of Food and Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/jsfa.14056","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Saponins from Sapindus mukorossi Gaertn. are natural surfactants with excellent foaming ability, biodegradability, and safety. However, their applications in food have been rarely reported. The aim of this work was therefore to investigate the synergistic antibacterial roles of a combination of sapindoside A and B (SAB), which are major components of Sapindus saponins, in altering the properties and fatty acids (FAs) in the membrane of Micrococcus luteus, which has been identified as an opportunistic pathogen.

Results: Microscopy showed that SAB destroyed the integrity of the cell membrane and internal structures and led to the leakage of the cell content. Further analysis indicated that the ratio of saturated FAs to unsaturated FAs was increased significantly, and the membrane fluidity, permeability, and integrity changed substantially. Although sapindoside A and B exerted similar synergistic effects on fatty acid composition and membrane fluidity, sapindoside A had a greater impact on membrane permeability and integrity, consistent with density functional theory.

Conclusion: The activity of M. luteus was inhibited more effectively by SAB than sapindoside A or B alone. It attacked cell membrane FAs, resulting in changing membrane fluidity, permeability, and integrity, eventually causing leakage of the cell contents, and ultimately cell death. This helped to provide evidence for the use of SAB as a natural antibacterial detergent additive in the food industry. © 2024 Society of Chemical Industry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
4.90%
发文量
634
审稿时长
3.1 months
期刊介绍: The Journal of the Science of Food and Agriculture publishes peer-reviewed original research, reviews, mini-reviews, perspectives and spotlights in these areas, with particular emphasis on interdisciplinary studies at the agriculture/ food interface. Published for SCI by John Wiley & Sons Ltd. SCI (Society of Chemical Industry) is a unique international forum where science meets business on independent, impartial ground. Anyone can join and current Members include consumers, business people, environmentalists, industrialists, farmers, and researchers. The Society offers a chance to share information between sectors as diverse as food and agriculture, pharmaceuticals, biotechnology, materials, chemicals, environmental science and safety. As well as organising educational events, SCI awards a number of prestigious honours and scholarships each year, publishes peer-reviewed journals, and provides Members with news from their sectors in the respected magazine, Chemistry & Industry . Originally established in London in 1881 and in New York in 1894, SCI is a registered charity with Members in over 70 countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信