Ya-Ching Yu;Chia-Hsien Tsai;Zhi-Qiang Lee;Chin-Yu Chang;Cheng-Chien Lin;Yi-Cheng Liao;Tzu-Hsuan Hsu;Ming-Huang Li
{"title":"A Magnetic-Free RF Circulator Based on Spatiotemporal Modulated LN/SiO2/Sapphire Surface Acoustic Wave Delay Lines","authors":"Ya-Ching Yu;Chia-Hsien Tsai;Zhi-Qiang Lee;Chin-Yu Chang;Cheng-Chien Lin;Yi-Cheng Liao;Tzu-Hsuan Hsu;Ming-Huang Li","doi":"10.1109/LED.2024.3477505","DOIUrl":null,"url":null,"abstract":"In this study, we explore the design and implementation of a magnetic-free radio frequency (RF) circulator using spatiotemporal modulated thin film surface acoustic wave delay lines. The four-port circulator is designed based on two tightly packed low-propagation loss acoustic delay lines (ADLs) on a single LN/SiO2/sapphire (LNOS) chip with sequentially-switched delay line (SSDL) topology, complemented by two external switch modules composed of commercially available RF switches. The ADLs are characterized by a low insertion loss (IL) of 5.54 dB, a wide 3-dB bandwidth of 5.45%, and a large group delay of 110 ns at 880 MHz, operating in shear horizontal (SH) mode. The implemented circulator achieves a nonreciprocal contrast of 18.2 dB and 20.8 dB between IL of 10.8 dB and isolation of 29 dB (port 3 to port 1) and 31.6 dB (port 4 to port 1) over an isolation bandwidth of 6% (53.6 MHz), with a low modulation frequency of 2.27 MHz.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2514-2517"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713394/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we explore the design and implementation of a magnetic-free radio frequency (RF) circulator using spatiotemporal modulated thin film surface acoustic wave delay lines. The four-port circulator is designed based on two tightly packed low-propagation loss acoustic delay lines (ADLs) on a single LN/SiO2/sapphire (LNOS) chip with sequentially-switched delay line (SSDL) topology, complemented by two external switch modules composed of commercially available RF switches. The ADLs are characterized by a low insertion loss (IL) of 5.54 dB, a wide 3-dB bandwidth of 5.45%, and a large group delay of 110 ns at 880 MHz, operating in shear horizontal (SH) mode. The implemented circulator achieves a nonreciprocal contrast of 18.2 dB and 20.8 dB between IL of 10.8 dB and isolation of 29 dB (port 3 to port 1) and 31.6 dB (port 4 to port 1) over an isolation bandwidth of 6% (53.6 MHz), with a low modulation frequency of 2.27 MHz.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.