The Impact of Homogenization Techniques and Conditions on Water-In-Oil Emulsions for Casein Hydrolysate–Loaded Double Emulsions: A Comparative Study

IF 3.5 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Pelin Salum, Çağla Ulubaş, Onur Güven, Mustafa Cam, Levent Yurdaer Aydemir, Zafer Erbay
{"title":"The Impact of Homogenization Techniques and Conditions on Water-In-Oil Emulsions for Casein Hydrolysate–Loaded Double Emulsions: A Comparative Study","authors":"Pelin Salum,&nbsp;Çağla Ulubaş,&nbsp;Onur Güven,&nbsp;Mustafa Cam,&nbsp;Levent Yurdaer Aydemir,&nbsp;Zafer Erbay","doi":"10.1002/fsn3.4525","DOIUrl":null,"url":null,"abstract":"<p>This study aims to evaluate homogenization techniques and conditions for producing stable, small droplet-size water-in-oil (W/O) emulsions intended for incorporation into casein hydrolysate–loaded double emulsions. Three commonly used homogenization methods; rotor–stator, ultrasonic, and high-pressure homogenization were individually optimized utilizing response surface methodology. Instances of over-processing were observed, particularly with the rotor–stator and ultrasonic homogenizers under specific conditions. Nevertheless, optimal conditions were identified for each technique: 530 s at 17,800 rpm agitation speed for the rotor–stator homogenizer, 139 s at 39% amplitude for the ultrasonic homogenizer, and 520 s at 1475 bar for the high-pressure homogenizer. Subsequently, the W/O emulsions produced under optimal conditions and their respective W<sub>1</sub>/O/W<sub>2</sub> double emulsions were compared. The rotor–stator and high-pressure homogenized W/O emulsions exhibited comparable narrow droplet-size distributions, as indicated by similar Span values. However, high-pressure homogenization failed to sufficiently minimize droplet size. Ultrasonic homogenization resulted in droplets at the 1-μm scale but yielded more polydisperse droplet-size distribution. According to TOPSIS analysis, an emulsion with a viscosity of 93.1 cP (centiPoise), a stability index of 93.8%, a D(90) of 0.67 μm (0th day), and a D(90) of 0.75 μm (30th day) produced using a rotor–stator was selected. Additionally, double emulsions containing primary emulsions prepared with the rotor–stator method demonstrated higher viscosity, narrower droplet-size distribution, and lower creaming compared to other samples. This investigation sheds light on the influence of homogenization techniques on emulsion properties, providing valuable insights for optimizing double emulsion formulations.</p>","PeriodicalId":12418,"journal":{"name":"Food Science & Nutrition","volume":"12 11","pages":"9585-9599"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fsn3.4525","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science & Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fsn3.4525","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to evaluate homogenization techniques and conditions for producing stable, small droplet-size water-in-oil (W/O) emulsions intended for incorporation into casein hydrolysate–loaded double emulsions. Three commonly used homogenization methods; rotor–stator, ultrasonic, and high-pressure homogenization were individually optimized utilizing response surface methodology. Instances of over-processing were observed, particularly with the rotor–stator and ultrasonic homogenizers under specific conditions. Nevertheless, optimal conditions were identified for each technique: 530 s at 17,800 rpm agitation speed for the rotor–stator homogenizer, 139 s at 39% amplitude for the ultrasonic homogenizer, and 520 s at 1475 bar for the high-pressure homogenizer. Subsequently, the W/O emulsions produced under optimal conditions and their respective W1/O/W2 double emulsions were compared. The rotor–stator and high-pressure homogenized W/O emulsions exhibited comparable narrow droplet-size distributions, as indicated by similar Span values. However, high-pressure homogenization failed to sufficiently minimize droplet size. Ultrasonic homogenization resulted in droplets at the 1-μm scale but yielded more polydisperse droplet-size distribution. According to TOPSIS analysis, an emulsion with a viscosity of 93.1 cP (centiPoise), a stability index of 93.8%, a D(90) of 0.67 μm (0th day), and a D(90) of 0.75 μm (30th day) produced using a rotor–stator was selected. Additionally, double emulsions containing primary emulsions prepared with the rotor–stator method demonstrated higher viscosity, narrower droplet-size distribution, and lower creaming compared to other samples. This investigation sheds light on the influence of homogenization techniques on emulsion properties, providing valuable insights for optimizing double emulsion formulations.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Science & Nutrition
Food Science & Nutrition Agricultural and Biological Sciences-Food Science
CiteScore
7.40
自引率
5.10%
发文量
434
审稿时长
24 weeks
期刊介绍: Food Science & Nutrition is the peer-reviewed journal for rapid dissemination of research in all areas of food science and nutrition. The Journal will consider submissions of quality papers describing the results of fundamental and applied research related to all aspects of human food and nutrition, as well as interdisciplinary research that spans these two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信