Jin Wook Lee;Geun Tae Park;Myeong Su Shin;Woo Young Choi
{"title":"Torsional-via-Assisted Nanoelectromechanical Memory Switches","authors":"Jin Wook Lee;Geun Tae Park;Myeong Su Shin;Woo Young Choi","doi":"10.1109/LED.2024.3483752","DOIUrl":null,"url":null,"abstract":"Monolithic three-dimensional integrated CMOS-nanoelectromechanical (NEM) circuits are gaining traction owing to their high chip density and low power consumption. However, the low endurance of NEM memory switches presents a reliability challenge. In this study, a novel torsional-via-assisted NEM memory switch design is proposed and experimentally demonstrated. The design incorporates vertically connected via anchors to allow torsion, which alleviates the maximum stress on the beam by ~46 % compared to the conventional in-plane design. The measurement data confirm endurance improvement, which sets a new benchmark for nonvolatile NEM memory switches with an endurance cycle exceeding 4,000 times. Furthermore, it was experimentally discussed that the electrode-gap narrowing induced by repeated switching cycles allows for a lower average operation voltage.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2573-2576"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10723102","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10723102/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Monolithic three-dimensional integrated CMOS-nanoelectromechanical (NEM) circuits are gaining traction owing to their high chip density and low power consumption. However, the low endurance of NEM memory switches presents a reliability challenge. In this study, a novel torsional-via-assisted NEM memory switch design is proposed and experimentally demonstrated. The design incorporates vertically connected via anchors to allow torsion, which alleviates the maximum stress on the beam by ~46 % compared to the conventional in-plane design. The measurement data confirm endurance improvement, which sets a new benchmark for nonvolatile NEM memory switches with an endurance cycle exceeding 4,000 times. Furthermore, it was experimentally discussed that the electrode-gap narrowing induced by repeated switching cycles allows for a lower average operation voltage.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.