Analytical solution for calculating three-dimensional responses due to dynamic loads acting on an underwater tunnel in stratified soil

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chao He, Yanrui Liu, Shunhua Zhou, Yuanping Jia, Xiaohui Zhang
{"title":"Analytical solution for calculating three-dimensional responses due to dynamic loads acting on an underwater tunnel in stratified soil","authors":"Chao He,&nbsp;Yanrui Liu,&nbsp;Shunhua Zhou,&nbsp;Yuanping Jia,&nbsp;Xiaohui Zhang","doi":"10.1016/j.compgeo.2024.106924","DOIUrl":null,"url":null,"abstract":"<div><div>Hydroacoustic noise generated by trains running in underwater tunnels significantly impacts aquatic ecosystems, particularly fish breeding grounds and the habitats of endangered species. This underscores the necessity of investigating the characteristics of wave propagation and noise radiation emanating from underwater tunnels. This study proposes a novel analytical method for calculating 3D responses due to a dynamic point load acting on an underwater tunnel in stratified soils that considers dynamic tunnel–soil–fluid interactions. Stratified soils consist of multiple sediment layers, which are simulated as saturated porous media, overlying substrate layers, which are modeled as phase elastic media. The transfer matrix method is applied to simulate wave propagation in a layered fluid–solid system. The functions describing various types of waves scattered at the layer interfaces and the tunnel–soil interface are unified by wave transformation, thereby deriving an analytical solution for dynamic tunnel–soil–fluid interactions. A comparison with existing methods via numerical cases confirms the accuracy of the proposed method. Vibrations and hydroacoustic noise owing to dynamic loads acting on an underwater tunnel buried either in a saturated sediment layer or a single-phase substrate layer are investigated. The influences of tunnel burial depth, layering, as well as the porosity and permeability of saturated sediment are systematically analyzed. This research enhances the understanding of wave propagation and noise radiation in water emanating from underwater tunnels, facilitating the development of vibration isolation measures and protecting aquatic ecosystems.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"178 ","pages":"Article 106924"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24008632","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Hydroacoustic noise generated by trains running in underwater tunnels significantly impacts aquatic ecosystems, particularly fish breeding grounds and the habitats of endangered species. This underscores the necessity of investigating the characteristics of wave propagation and noise radiation emanating from underwater tunnels. This study proposes a novel analytical method for calculating 3D responses due to a dynamic point load acting on an underwater tunnel in stratified soils that considers dynamic tunnel–soil–fluid interactions. Stratified soils consist of multiple sediment layers, which are simulated as saturated porous media, overlying substrate layers, which are modeled as phase elastic media. The transfer matrix method is applied to simulate wave propagation in a layered fluid–solid system. The functions describing various types of waves scattered at the layer interfaces and the tunnel–soil interface are unified by wave transformation, thereby deriving an analytical solution for dynamic tunnel–soil–fluid interactions. A comparison with existing methods via numerical cases confirms the accuracy of the proposed method. Vibrations and hydroacoustic noise owing to dynamic loads acting on an underwater tunnel buried either in a saturated sediment layer or a single-phase substrate layer are investigated. The influences of tunnel burial depth, layering, as well as the porosity and permeability of saturated sediment are systematically analyzed. This research enhances the understanding of wave propagation and noise radiation in water emanating from underwater tunnels, facilitating the development of vibration isolation measures and protecting aquatic ecosystems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信