{"title":"Service risk evaluation of telecommunication core network: A perspective of routing resilience","authors":"Zongqi Xue, Zhenglin Liang","doi":"10.1016/j.ress.2024.110629","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing dependence on telecommunication networks for digitalization raises apprehensions about their vulnerability to disruptions, potentially impacting service performance. Classic risk analysis for telecommunication networks often overlooks the compensating effect of rerouting and its resulting resilience. Our study is devoted to conducting an evaluation of service risk within telecommunication core networks, with a particular emphasis on rerouting resilience. Telecommunication core networks operate on a large scale, where various autonomous systems interconnect through pivotal anchor points. Its routing is typically governed by multiple protocols, including Interior Gateway Protocol and Border Gateway Protocol. We apply percolation theory and Monte Carlo Tree Search to effectively analyze the potential service risk and sequential rerouting effects caused by disruptions marked by a noteworthy probability and substantial impact. Our findings highlight the dual nature of rerouting: it enhances service connectivity while potentially increasing service flows in nearby routers, leading to heightened time delays and packet loss ratios. To comprehensively assess network service risk considering this double-edged sword impact, we devise a performance vector covering service connectivity, time delay, and packet loss across various data transmissions and disruptions. The overall approach is tested on two telecommunication core networks.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110629"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007002","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing dependence on telecommunication networks for digitalization raises apprehensions about their vulnerability to disruptions, potentially impacting service performance. Classic risk analysis for telecommunication networks often overlooks the compensating effect of rerouting and its resulting resilience. Our study is devoted to conducting an evaluation of service risk within telecommunication core networks, with a particular emphasis on rerouting resilience. Telecommunication core networks operate on a large scale, where various autonomous systems interconnect through pivotal anchor points. Its routing is typically governed by multiple protocols, including Interior Gateway Protocol and Border Gateway Protocol. We apply percolation theory and Monte Carlo Tree Search to effectively analyze the potential service risk and sequential rerouting effects caused by disruptions marked by a noteworthy probability and substantial impact. Our findings highlight the dual nature of rerouting: it enhances service connectivity while potentially increasing service flows in nearby routers, leading to heightened time delays and packet loss ratios. To comprehensively assess network service risk considering this double-edged sword impact, we devise a performance vector covering service connectivity, time delay, and packet loss across various data transmissions and disruptions. The overall approach is tested on two telecommunication core networks.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.