Multivariate degradation modeling using generalized cauchy process and application in life prediction of dye-sensitized solar cells

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Ali Asgari , Wujun Si , Wei Wei , Krishna Krishnan , Kunpeng Liu
{"title":"Multivariate degradation modeling using generalized cauchy process and application in life prediction of dye-sensitized solar cells","authors":"Ali Asgari ,&nbsp;Wujun Si ,&nbsp;Wei Wei ,&nbsp;Krishna Krishnan ,&nbsp;Kunpeng Liu","doi":"10.1016/j.ress.2024.110651","DOIUrl":null,"url":null,"abstract":"<div><div>Recently, the Generalized Cauchy (GC) process has been applied to capture a Long Memory (LM) phenomenon in product degradation modeling and life prediction. Compared with the traditional fractional Brownian motion that captures the LM using a single Hurst parameter, the GC process has two free parameters (Hurst and fractal dimension parameters) that flexibly capture both global LM and local irregularity. However, all existing GC-based degradation models are for a single Degradation Characteristic (DC). In this article, motivated by a real degradation problem of dye-sensitized solar cells that jointly exhibits multiple DCs, global LM, local irregularity and DC-wise cross-correlation, we propose a novel GC-based Multivariate Degradation Model (GC-MDM) to simultaneously capture the aforementioned effects. A maximum likelihood estimation approach is developed to estimate parameters of the GC-MDM. Subsequently, product life prediction based on the GC-MDM is developed. The proposed GC-MDM is validated through a simulation study and a physical experiment of dye-sensitized solar cells. Results show that the proposed GC-MDM fundamentally improves the life prediction accuracy in comparison with conventional degradation models which significantly misestimate the uncertainty of product life.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110651"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007221","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, the Generalized Cauchy (GC) process has been applied to capture a Long Memory (LM) phenomenon in product degradation modeling and life prediction. Compared with the traditional fractional Brownian motion that captures the LM using a single Hurst parameter, the GC process has two free parameters (Hurst and fractal dimension parameters) that flexibly capture both global LM and local irregularity. However, all existing GC-based degradation models are for a single Degradation Characteristic (DC). In this article, motivated by a real degradation problem of dye-sensitized solar cells that jointly exhibits multiple DCs, global LM, local irregularity and DC-wise cross-correlation, we propose a novel GC-based Multivariate Degradation Model (GC-MDM) to simultaneously capture the aforementioned effects. A maximum likelihood estimation approach is developed to estimate parameters of the GC-MDM. Subsequently, product life prediction based on the GC-MDM is developed. The proposed GC-MDM is validated through a simulation study and a physical experiment of dye-sensitized solar cells. Results show that the proposed GC-MDM fundamentally improves the life prediction accuracy in comparison with conventional degradation models which significantly misestimate the uncertainty of product life.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信