Zhichao He , Yanhui Wang , Wanhua Sun , Yucheng Hao , Weifu Xia
{"title":"A proactive opportunistic maintenance decision model based on reliability in train systems","authors":"Zhichao He , Yanhui Wang , Wanhua Sun , Yucheng Hao , Weifu Xia","doi":"10.1016/j.ress.2024.110645","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an innovative framework for optimizing maintenance strategy in complex electromechanical systems (CEMS), by mitigating over-maintenance and suboptimal resource allocation. This study proposes an optimized maintenance strategy based on opportunistic maintenance with reliability as the core. A topological network model is used to establish a model that forecasts system reliability from function and structure, resulting in the identification of critical components in the system. Subsequently, a maintenance model for mechanical, electrical and information components is proposed and a method for determining maintenance reliability thresholds is suggested. The research imposes constraints in component and system reliability, in constructing an opportunistic maintenance strategies model. The objective of this model was to minimize the maintenance cost. A case study on high-speed railway bogie system supports this strategy, effectively guaranteeing system reliability while reducing maintenance costs. Maintenance resources are allocated reasonably across various stages, thereby reducing wastage of resources.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110645"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007166","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an innovative framework for optimizing maintenance strategy in complex electromechanical systems (CEMS), by mitigating over-maintenance and suboptimal resource allocation. This study proposes an optimized maintenance strategy based on opportunistic maintenance with reliability as the core. A topological network model is used to establish a model that forecasts system reliability from function and structure, resulting in the identification of critical components in the system. Subsequently, a maintenance model for mechanical, electrical and information components is proposed and a method for determining maintenance reliability thresholds is suggested. The research imposes constraints in component and system reliability, in constructing an opportunistic maintenance strategies model. The objective of this model was to minimize the maintenance cost. A case study on high-speed railway bogie system supports this strategy, effectively guaranteeing system reliability while reducing maintenance costs. Maintenance resources are allocated reasonably across various stages, thereby reducing wastage of resources.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.