Congbin Yang , Yongqi Wang , Jun Yan , Zhifeng Liu , Tao Zhang
{"title":"A fault hierarchical propagation reliability improvement method for CNC machine tools based on spatiotemporal factors coupling","authors":"Congbin Yang , Yongqi Wang , Jun Yan , Zhifeng Liu , Tao Zhang","doi":"10.1016/j.ress.2024.110672","DOIUrl":null,"url":null,"abstract":"<div><div>Clarifying the fault propagation mechanism is one of the key methods for improving the machine tool's reliability. However, current modeling methods usually overlook the impact of spatiotemporal coupling factors on fault propagation, leading to a limited understanding of the fault propagation mechanism. Therefore, this paper proposes a fault hierarchical propagation reliability improvement method based on spatiotemporal factors coupling. Considering the coupling effects of component comprehensive importance, fault tolerance, and failure modes on the machine tool system, a spatiotemporal fault hierarchical propagation topological directed graph model was established. Based on this, an improved method for calculating fault propagation strength was proposed to identify weak links and critical fault propagation paths. The proposed method effectively addresses the critical path identification problem across CNC machine tool systems. Comparison results demonstrate that the proposed method can accurately identify critical fault propagation paths. Furthermore, the influence of various factors on these path sequences is studied in this paper. It extends the traditional modeling methods and theories to enhance the transparency of the fault propagation process within the machine tool system. This work provides theoretical support for maintenance decision-making.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110672"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007439","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Clarifying the fault propagation mechanism is one of the key methods for improving the machine tool's reliability. However, current modeling methods usually overlook the impact of spatiotemporal coupling factors on fault propagation, leading to a limited understanding of the fault propagation mechanism. Therefore, this paper proposes a fault hierarchical propagation reliability improvement method based on spatiotemporal factors coupling. Considering the coupling effects of component comprehensive importance, fault tolerance, and failure modes on the machine tool system, a spatiotemporal fault hierarchical propagation topological directed graph model was established. Based on this, an improved method for calculating fault propagation strength was proposed to identify weak links and critical fault propagation paths. The proposed method effectively addresses the critical path identification problem across CNC machine tool systems. Comparison results demonstrate that the proposed method can accurately identify critical fault propagation paths. Furthermore, the influence of various factors on these path sequences is studied in this paper. It extends the traditional modeling methods and theories to enhance the transparency of the fault propagation process within the machine tool system. This work provides theoretical support for maintenance decision-making.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.