Chaojing Lin , Yunxiao Chen , Mingliang Bai , Zhenhua Long , Peng Yao , Jinfu Liu , Daren Yu
{"title":"Improved multiple penalty mechanism based loss function for more realistic aeroengine RUL advanced prediction","authors":"Chaojing Lin , Yunxiao Chen , Mingliang Bai , Zhenhua Long , Peng Yao , Jinfu Liu , Daren Yu","doi":"10.1016/j.ress.2024.110666","DOIUrl":null,"url":null,"abstract":"<div><div>The aeroengine remaining useful life (RUL) prediction is conducive to formulating maintenance plans, assisting maintenance decisions, and improving the intelligent operation and maintenance level. When the engine is in a degraded state, the maintenance personnel tend to prediction advance rather than prediction delay. However, the current RUL prediction researches mainly focus on accurate prediction, and pay little attention to the realistic demand of advanced prediction. Aiming at this problem, this paper proposes a multiple penalty mechanism (MPM) based loss function combined with similarity RUL prediction. This research first uses multi-dimensional sensor data to construct a health index (HI) that characterizes the engine health status, then matches the HI similarity by derivative dynamic time warping corrected with different sequence length (DDTW-DSL). Finally, the MPM loss function assists the neural network to realize the mapping from HI to RUL. The method is verified by NASA's Commercial Modular Aero-Propulsion System Simulation dataset. The results show that compared with the traditional RMSE loss function, the MPM loss function can significantly improve the advanced prediction probability and effectively avoid RUL prediction lag. Compared with the existing methods, the novel method has advantages in both RUL prediction effect and model complexity.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110666"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007373","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The aeroengine remaining useful life (RUL) prediction is conducive to formulating maintenance plans, assisting maintenance decisions, and improving the intelligent operation and maintenance level. When the engine is in a degraded state, the maintenance personnel tend to prediction advance rather than prediction delay. However, the current RUL prediction researches mainly focus on accurate prediction, and pay little attention to the realistic demand of advanced prediction. Aiming at this problem, this paper proposes a multiple penalty mechanism (MPM) based loss function combined with similarity RUL prediction. This research first uses multi-dimensional sensor data to construct a health index (HI) that characterizes the engine health status, then matches the HI similarity by derivative dynamic time warping corrected with different sequence length (DDTW-DSL). Finally, the MPM loss function assists the neural network to realize the mapping from HI to RUL. The method is verified by NASA's Commercial Modular Aero-Propulsion System Simulation dataset. The results show that compared with the traditional RMSE loss function, the MPM loss function can significantly improve the advanced prediction probability and effectively avoid RUL prediction lag. Compared with the existing methods, the novel method has advantages in both RUL prediction effect and model complexity.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.