Modeling nuclear power plant piping reliability by coupling a human reliability analysis-based maintenance model with a physical degradation model

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
John Beal, Seyed Reihani, Tatsuya Sakurahara, Ernie Kee, Zahra Mohaghegh
{"title":"Modeling nuclear power plant piping reliability by coupling a human reliability analysis-based maintenance model with a physical degradation model","authors":"John Beal,&nbsp;Seyed Reihani,&nbsp;Tatsuya Sakurahara,&nbsp;Ernie Kee,&nbsp;Zahra Mohaghegh","doi":"10.1016/j.ress.2024.110655","DOIUrl":null,"url":null,"abstract":"<div><div>Reliability and availability analysis for repairable components, considering the underlying physical degradation and maintenance, is crucial in support of risk assessment and management. In nuclear power plants (NPPs), reactor coolant piping is a representative example of safety-critical repairable components that are subjected to long-term physical degradation interacting with maintenance activities. The existing methods for piping reliability analysis suffer from a limitation in their capability to analyze the time-dependent physics-maintenance interactions that could occur during the component lifetime and alter the underlying maintenance processes, for instance, an enhancement of maintenance programs based on condition monitoring data or an observed defect. To address this limitation, this paper develops a new piping reliability analysis methodology that couples a physics-of-failure (PoF) model with a maintenance performance analysis model. The contributions of this paper are two-fold: (i) developing a human reliability analysis (HRA)-based maintenance performance analysis model for NPP piping that can quantify maintenance outcomes under multiple types of maintenance programs, including time-based and condition-based preventive maintenance; and (ii) developing a computational methodology to couple the HRA-based maintenance performance analysis model with PoF models. The proposed physics-maintenance coupling methodology is applied to an NPP piping case study.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"255 ","pages":"Article 110655"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007269","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Reliability and availability analysis for repairable components, considering the underlying physical degradation and maintenance, is crucial in support of risk assessment and management. In nuclear power plants (NPPs), reactor coolant piping is a representative example of safety-critical repairable components that are subjected to long-term physical degradation interacting with maintenance activities. The existing methods for piping reliability analysis suffer from a limitation in their capability to analyze the time-dependent physics-maintenance interactions that could occur during the component lifetime and alter the underlying maintenance processes, for instance, an enhancement of maintenance programs based on condition monitoring data or an observed defect. To address this limitation, this paper develops a new piping reliability analysis methodology that couples a physics-of-failure (PoF) model with a maintenance performance analysis model. The contributions of this paper are two-fold: (i) developing a human reliability analysis (HRA)-based maintenance performance analysis model for NPP piping that can quantify maintenance outcomes under multiple types of maintenance programs, including time-based and condition-based preventive maintenance; and (ii) developing a computational methodology to couple the HRA-based maintenance performance analysis model with PoF models. The proposed physics-maintenance coupling methodology is applied to an NPP piping case study.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信