Characterization of rolling bearing rotation and local defects exploiting their magnetic remanence

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Gianluca Caposciutti , Enrico Ciulli , Massimo Macucci , Mauro Bologna , Bernardo Tellini
{"title":"Characterization of rolling bearing rotation and local defects exploiting their magnetic remanence","authors":"Gianluca Caposciutti ,&nbsp;Enrico Ciulli ,&nbsp;Massimo Macucci ,&nbsp;Mauro Bologna ,&nbsp;Bernardo Tellini","doi":"10.1016/j.measurement.2024.116252","DOIUrl":null,"url":null,"abstract":"<div><div>Rotational speed and defect monitoring are of crucial relevance for all the rotating machinery. Traditional sensors require to be mounted on or near the rotating bodies, exposing them to significant thermal and mechanical stress. In this work, a method has been developed to measure the angular velocity and to detect the presence of potential bearing defects from the analysis of the magnetic field generated by the residual magnetization of moving parts. To test such an approach, a dedicated experimental setup using a bare induction coil and a magnetoresistive device as separate sensing elements has been developed. This contactless technique provides reliable results and can achieve performance similar to or better than that of accelerometers, which are commonly used for this purpose. The presence of defects has been further assessed using white light interferometry. Finally, the results are discussed and compared with alternative techniques.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"242 ","pages":"Article 116252"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124021377","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rotational speed and defect monitoring are of crucial relevance for all the rotating machinery. Traditional sensors require to be mounted on or near the rotating bodies, exposing them to significant thermal and mechanical stress. In this work, a method has been developed to measure the angular velocity and to detect the presence of potential bearing defects from the analysis of the magnetic field generated by the residual magnetization of moving parts. To test such an approach, a dedicated experimental setup using a bare induction coil and a magnetoresistive device as separate sensing elements has been developed. This contactless technique provides reliable results and can achieve performance similar to or better than that of accelerometers, which are commonly used for this purpose. The presence of defects has been further assessed using white light interferometry. Finally, the results are discussed and compared with alternative techniques.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信