Cristianne Santana Santos, Bruno de Santana Santos, Marcos Vinicius Meiado
{"title":"How does temperature influence hydration memory in seeds and seedlings of Crotalaria retusa L. (Fabaceae)?","authors":"Cristianne Santana Santos, Bruno de Santana Santos, Marcos Vinicius Meiado","doi":"10.1007/s11738-024-03737-6","DOIUrl":null,"url":null,"abstract":"<div><p>In 24 years of studies on seed-hydration memory, the benefits promoted by cycles of hydration and dehydration in germination and the initial development of plants, such as increased tolerance to environmental stress, have been unraveled. However, little is still known about how the combination of different factors influences this memory. This study aimed to investigate the effects of hydration and dehydration (HD) cycles at different temperatures on the germination and initial development of <i>Crotalaria retusa</i> seedlings under water deficit conditions. HD cycles were simulated as pre-germination treatments, and the seeds were subjected to 0, 1, 2, or 3 cycles at 25, 30, or 40 °C. After germination, the seedlings were subjected to 10 days of water suppression (water deficit) and 10 days of recovery. The results showed that HD cycles and temperature had a positive effect on germination, although higher temperatures and more cycles decreased germinability. Seedling growth was reduced in the combination of HD cycles, temperature, and water deficit, which can be a strategy of tolerance to water stress by plants. The passage through HD cycles promoted changes in germination and development of <i>C. retusa</i>, which can aid in the process of invasion of the species in arid and semi-arid environments and can bring competitive benefits in relation to native species. Overall, the study highlights the importance of HD cycles for the successful establishment of <i>C. retusa</i> in harsh environments.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"46 12","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-024-03737-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In 24 years of studies on seed-hydration memory, the benefits promoted by cycles of hydration and dehydration in germination and the initial development of plants, such as increased tolerance to environmental stress, have been unraveled. However, little is still known about how the combination of different factors influences this memory. This study aimed to investigate the effects of hydration and dehydration (HD) cycles at different temperatures on the germination and initial development of Crotalaria retusa seedlings under water deficit conditions. HD cycles were simulated as pre-germination treatments, and the seeds were subjected to 0, 1, 2, or 3 cycles at 25, 30, or 40 °C. After germination, the seedlings were subjected to 10 days of water suppression (water deficit) and 10 days of recovery. The results showed that HD cycles and temperature had a positive effect on germination, although higher temperatures and more cycles decreased germinability. Seedling growth was reduced in the combination of HD cycles, temperature, and water deficit, which can be a strategy of tolerance to water stress by plants. The passage through HD cycles promoted changes in germination and development of C. retusa, which can aid in the process of invasion of the species in arid and semi-arid environments and can bring competitive benefits in relation to native species. Overall, the study highlights the importance of HD cycles for the successful establishment of C. retusa in harsh environments.
期刊介绍:
Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry.
The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.