Conversion of Kappaphycus alvarezii macroalgae biomass enriched with fulvic acid into a foliar biostimulant for plant (Oryza sativa L.) growth and stress protection
Tadeu Augusto van Tol de Castro, Danielle França de Oliveira Torchia, Ayhessa Cristina Santos de Lima, Samuel de Abreu Lopes, Raphaella Esterque Cantarino, Natália Fernandes Rodrigues, Erinaldo Gomes Pereira, Vinicius Olivieri Rodrigues Gomes, Leandro Azevedo Santos, Ana Lúcia do Amaral Vendramini, Andrés Calderín García
{"title":"Conversion of Kappaphycus alvarezii macroalgae biomass enriched with fulvic acid into a foliar biostimulant for plant (Oryza sativa L.) growth and stress protection","authors":"Tadeu Augusto van Tol de Castro, Danielle França de Oliveira Torchia, Ayhessa Cristina Santos de Lima, Samuel de Abreu Lopes, Raphaella Esterque Cantarino, Natália Fernandes Rodrigues, Erinaldo Gomes Pereira, Vinicius Olivieri Rodrigues Gomes, Leandro Azevedo Santos, Ana Lúcia do Amaral Vendramini, Andrés Calderín García","doi":"10.1186/s40538-024-00687-6","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The incorporation of circular economy into agricultural processes is necessary to improve the efficiency of agronomic practices in the future. The biomass of macroalgae as well as humic substances is sustainable options for stimulating the efficient use of nutrients in plants. This study aimed to evaluate the modes of action of a potential plant biostimulant composed of an aqueous extract of <i>Kappaphycus alvarezii</i> seaweed plus fulvic acid (KAF) applied to rice (<i>Oryza sativa</i> L.) leaves. The aqueous extract was obtained from the fresh biomass of the macroalga <i>Kappaphycus alvarezii</i> and the fulvic acid was extracted from a cattle manure vermicompost (FA<sub>VC</sub>). Both fractions (K<sub>Alv</sub>-sap and FA<sub>VC</sub>) were characterized using <sup>1</sup>H NMR. The bioactivity of KAF was evaluated in experiments with four treatments: control (foliar application of water), FA<sub>VC</sub> (foliar application of FA<sub>VC</sub>), K<sub>Alv</sub>-sap (foliar application of seaweed extract), and KAF (foliar application of FA + K<sub>Alv</sub>-sap). In rice, the expression of genes related to K<sup>+</sup> and N transport, plasma membrane H<sup>+</sup>-ATPases, and oxidative stress defense enzymes were evaluated. Metabolites and N, K, and P contents, as well as photosynthetic efficiency and root morphology, were quantified.</p><h3>Results</h3><p>The <sup>1</sup>H-NMR spectra showed that KAF is rich in organic fragments such as sugars, nitrogenous, aromatic, and aliphatic compounds in general. Foliar application of KAF resulted in a 7.1% and 19.04% increase in the dry mass of roots and leaves, respectively. These plants had 19% more roots and 11% more total root length. The application of KAF increased in the plant sheaths the N and K contents by up to 50% and 14%, respectively.</p><h3>Conclusions</h3><p>The mechanism of action by which KAF triggered these changes seemed to start with an improvement in the photosynthetic efficiency of plants and regulation through increased expression and suppression of genes related to K<sup>+</sup>, N, H<sup>+</sup>-ATPase transporters, and oxidative metabolism. KAF might become a sustainable plant biostimulant that promotes plant growth, development, and defense against abiotic stresses.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00687-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00687-6","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The incorporation of circular economy into agricultural processes is necessary to improve the efficiency of agronomic practices in the future. The biomass of macroalgae as well as humic substances is sustainable options for stimulating the efficient use of nutrients in plants. This study aimed to evaluate the modes of action of a potential plant biostimulant composed of an aqueous extract of Kappaphycus alvarezii seaweed plus fulvic acid (KAF) applied to rice (Oryza sativa L.) leaves. The aqueous extract was obtained from the fresh biomass of the macroalga Kappaphycus alvarezii and the fulvic acid was extracted from a cattle manure vermicompost (FAVC). Both fractions (KAlv-sap and FAVC) were characterized using 1H NMR. The bioactivity of KAF was evaluated in experiments with four treatments: control (foliar application of water), FAVC (foliar application of FAVC), KAlv-sap (foliar application of seaweed extract), and KAF (foliar application of FA + KAlv-sap). In rice, the expression of genes related to K+ and N transport, plasma membrane H+-ATPases, and oxidative stress defense enzymes were evaluated. Metabolites and N, K, and P contents, as well as photosynthetic efficiency and root morphology, were quantified.
Results
The 1H-NMR spectra showed that KAF is rich in organic fragments such as sugars, nitrogenous, aromatic, and aliphatic compounds in general. Foliar application of KAF resulted in a 7.1% and 19.04% increase in the dry mass of roots and leaves, respectively. These plants had 19% more roots and 11% more total root length. The application of KAF increased in the plant sheaths the N and K contents by up to 50% and 14%, respectively.
Conclusions
The mechanism of action by which KAF triggered these changes seemed to start with an improvement in the photosynthetic efficiency of plants and regulation through increased expression and suppression of genes related to K+, N, H+-ATPase transporters, and oxidative metabolism. KAF might become a sustainable plant biostimulant that promotes plant growth, development, and defense against abiotic stresses.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.