Influence of Tryptophan Metabolism on the Protective Effect of Weissella paramesenteroides WpK4 in a Murine Model of Chemotherapy-Induced Intestinal Mucositis.
IF 4.4 2区 生物学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Gabriele Moreira Guimarães, Karen Costa, César da Silva Santana Moura, Sarah Elisa Diniz Moreira, Joana Mozer Marchiori, Anna Clara Paiva de Menezes Santos, Rafaela Ribeiro Alvares Batista, Celso Martins Queiroz-Junior, Juliana Divina Almeida Raposo, Fernão Castro Braga, Marcelo Vidigal Caliari, Álvaro Cantini Nunes, Caio Tavares Fagundes, Elisabeth Neumann
{"title":"Influence of Tryptophan Metabolism on the Protective Effect of Weissella paramesenteroides WpK4 in a Murine Model of Chemotherapy-Induced Intestinal Mucositis.","authors":"Gabriele Moreira Guimarães, Karen Costa, César da Silva Santana Moura, Sarah Elisa Diniz Moreira, Joana Mozer Marchiori, Anna Clara Paiva de Menezes Santos, Rafaela Ribeiro Alvares Batista, Celso Martins Queiroz-Junior, Juliana Divina Almeida Raposo, Fernão Castro Braga, Marcelo Vidigal Caliari, Álvaro Cantini Nunes, Caio Tavares Fagundes, Elisabeth Neumann","doi":"10.1007/s12602-024-10413-1","DOIUrl":null,"url":null,"abstract":"<p><p>Dysbiosis is a notable marker of intestinal mucositis, an inflammatory condition induced by antineoplastic chemotherapy. Scientific evidence supports the effectiveness of probiotics in managing dysbiosis associated with intestinal mucositis. It is known that tryptophan metabolism is a regulatory component in the multifactorial phenomenon of mucosal homeostasis. In the face of that, we aimed to investigate if oral administration of Weissella paramesenteroides WpK4, a probiotic candidate strain, has a protective effect in a murine model of intestinal mucositis induced by 5-fluorouracil (5-FU) and if tryptophan metabolism plays any role in this effect. Gavage with viable cells of W. paramesenteroides WpK4 increased intestinal mucus production, regeneration of villi, as well as control of dysbiosis in mice submitted to 5-FU chemotherapy, and resulted in 100% survival, unlike the control saline-treated group, which resulted in 60% survival of mice after mucositis induction. Weissella paramesenteroides WpK4 genome harbors sequences encoding enzymes for tryptophan production and catabolism and can synthesize tryptophan, tryptamine, and indole acetic acid in vitro. Besides, oral administration of WpK4 induced increased expression of molecules involved in tryptophan metabolism in mouse ileum and serum. Notably, simultaneous treatment with alfa-naphthoflavone, an aryl hydrocarbon receptor (AhR) inhibitor, abolished the protective effects exerted by W. paramesenteroides Wpk4, as manifested by a significant decline in body weight, suggesting that treatment with the probiotic strain modulates AhR activation. Our results suggest that tryptophan metabolism is potentially involved in the protective effects caused by oral administration of W. paramesenteroides WpK4 to mice during gut inflammatory conditions induced by 5-FU.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10413-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dysbiosis is a notable marker of intestinal mucositis, an inflammatory condition induced by antineoplastic chemotherapy. Scientific evidence supports the effectiveness of probiotics in managing dysbiosis associated with intestinal mucositis. It is known that tryptophan metabolism is a regulatory component in the multifactorial phenomenon of mucosal homeostasis. In the face of that, we aimed to investigate if oral administration of Weissella paramesenteroides WpK4, a probiotic candidate strain, has a protective effect in a murine model of intestinal mucositis induced by 5-fluorouracil (5-FU) and if tryptophan metabolism plays any role in this effect. Gavage with viable cells of W. paramesenteroides WpK4 increased intestinal mucus production, regeneration of villi, as well as control of dysbiosis in mice submitted to 5-FU chemotherapy, and resulted in 100% survival, unlike the control saline-treated group, which resulted in 60% survival of mice after mucositis induction. Weissella paramesenteroides WpK4 genome harbors sequences encoding enzymes for tryptophan production and catabolism and can synthesize tryptophan, tryptamine, and indole acetic acid in vitro. Besides, oral administration of WpK4 induced increased expression of molecules involved in tryptophan metabolism in mouse ileum and serum. Notably, simultaneous treatment with alfa-naphthoflavone, an aryl hydrocarbon receptor (AhR) inhibitor, abolished the protective effects exerted by W. paramesenteroides Wpk4, as manifested by a significant decline in body weight, suggesting that treatment with the probiotic strain modulates AhR activation. Our results suggest that tryptophan metabolism is potentially involved in the protective effects caused by oral administration of W. paramesenteroides WpK4 to mice during gut inflammatory conditions induced by 5-FU.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.