Bioactivity of Grape Pomace Extract and Sodium Selenite, Key Components of the OenoGrape Advanced Complex, on Target Human Cells: Intracellular ROS Scavenging and Nrf2/ARE Induction Following In Vitro Intestinal Absorption.
{"title":"Bioactivity of Grape Pomace Extract and Sodium Selenite, Key Components of the OenoGrape Advanced Complex, on Target Human Cells: Intracellular ROS Scavenging and Nrf2/ARE Induction Following In Vitro Intestinal Absorption.","authors":"Cécile Dufour, Camille Gironde, Mylène Rigal, Christophe Furger, Erwan Le Roux","doi":"10.3390/antiox13111392","DOIUrl":null,"url":null,"abstract":"<p><p>Oenobiol Sun Expert, a food formulation designed to enhance skin health prior to sun exposure, has been optimized by incorporating the OenoGrape Advanced Complex, which includes grape pomace extract, increased selenium content and 10% lycopene-rich tomato extract, with these constituents exhibiting high antioxidant potential. To evaluate the effects of these individual ingredients and the overall formulation at the cellular level, the AOP1 cell antioxidant efficacy assay was employed to measure the intracellular free radical scavenging activity, while the Cell Antioxidant Assay (CAA or DCFH-DA) assay was used to assess peroxidation scavenging at the plasma membrane level. The indirect antioxidant activity was examined using stably transfected cell lines containing a luciferase reporter gene controlled by the Antioxidant Response Element (ARE), which activates the endogenous antioxidant system via the Nrf2/Keap1-ARE pathway. Our results indicate that among the individual components, grape pomace extract and sodium selenite possess high and complementary antioxidant properties. Grape pomace extract was particularly effective in inhibiting free radicals (AOP1 EC<sub>50</sub> = 6.80 μg/mL) and activating the ARE pathway (ARE EC<sub>50</sub> = 231.1 μg/mL), whereas sodium selenite exerted its effects through potent ARE activation at sub-microgram levels (EC<sub>50</sub> = 0.367 μg/mL). In contrast, the lycopene-rich tomato extract did not show a notable contribution to the antioxidant effects. The antiradical activity of the OenoGrape Advanced Complex, comprising these three ingredients, was very efficient and consistent with the results obtained for the individual components (AOP1 EC<sub>50</sub> = 15.78 µg/mL and ARE EC<sub>50</sub> of 707.7 μg/mL). Similarly, the free radical scavenging activity still persisted in the Oenobiol Sun Expert formulation (AOP1 EC<sub>50</sub> = 36.63 µg/mL). Next, in vitro intestinal transepithelial transfer experiments were performed. The basolateral compartments of cells exposed to the ingredients were collected and assessed using the same antioxidant cell assays. The direct and indirect antioxidant activities were measured on both hepatocytes and keratinocytes, demonstrating the bioavailability and bioactivity of grape pomace extract and sodium selenite. These finding suggest that the ingredients of this food supplement contribute to enhanced cytoprotection following ingestion.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13111392","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oenobiol Sun Expert, a food formulation designed to enhance skin health prior to sun exposure, has been optimized by incorporating the OenoGrape Advanced Complex, which includes grape pomace extract, increased selenium content and 10% lycopene-rich tomato extract, with these constituents exhibiting high antioxidant potential. To evaluate the effects of these individual ingredients and the overall formulation at the cellular level, the AOP1 cell antioxidant efficacy assay was employed to measure the intracellular free radical scavenging activity, while the Cell Antioxidant Assay (CAA or DCFH-DA) assay was used to assess peroxidation scavenging at the plasma membrane level. The indirect antioxidant activity was examined using stably transfected cell lines containing a luciferase reporter gene controlled by the Antioxidant Response Element (ARE), which activates the endogenous antioxidant system via the Nrf2/Keap1-ARE pathway. Our results indicate that among the individual components, grape pomace extract and sodium selenite possess high and complementary antioxidant properties. Grape pomace extract was particularly effective in inhibiting free radicals (AOP1 EC50 = 6.80 μg/mL) and activating the ARE pathway (ARE EC50 = 231.1 μg/mL), whereas sodium selenite exerted its effects through potent ARE activation at sub-microgram levels (EC50 = 0.367 μg/mL). In contrast, the lycopene-rich tomato extract did not show a notable contribution to the antioxidant effects. The antiradical activity of the OenoGrape Advanced Complex, comprising these three ingredients, was very efficient and consistent with the results obtained for the individual components (AOP1 EC50 = 15.78 µg/mL and ARE EC50 of 707.7 μg/mL). Similarly, the free radical scavenging activity still persisted in the Oenobiol Sun Expert formulation (AOP1 EC50 = 36.63 µg/mL). Next, in vitro intestinal transepithelial transfer experiments were performed. The basolateral compartments of cells exposed to the ingredients were collected and assessed using the same antioxidant cell assays. The direct and indirect antioxidant activities were measured on both hepatocytes and keratinocytes, demonstrating the bioavailability and bioactivity of grape pomace extract and sodium selenite. These finding suggest that the ingredients of this food supplement contribute to enhanced cytoprotection following ingestion.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.