László Szivos, József Virga, Zoltán Mészár, Melinda Rostás, Andrea Bakó, Gábor Zahuczki, Tibor Hortobágyi, Álmos Klekner
{"title":"Prognostic Role of Invasion-Related Extracellular Matrix Molecules in Diffusely Infiltrating Grade 2 and 3 Astrocytomas.","authors":"László Szivos, József Virga, Zoltán Mészár, Melinda Rostás, Andrea Bakó, Gábor Zahuczki, Tibor Hortobágyi, Álmos Klekner","doi":"10.3390/brainsci14111157","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Astrocytoma, an IDH-mutant is a common primary brain tumor. Total surgical resection is not feasible due to peritumoral infiltration mediated by extracellular matrix (ECM) molecules.</p><p><strong>Methods: </strong>This study aimed at determining the expression pattern of ECM molecules in different prognostic groups of WHO grade 2 and grade 3 patients and identifying the effect of onco-radiotherapy on tumor cell invasion of grade 3 patients. Gene and protein expression of ECM molecules was determined by qRT-PCR and immunohistochemistry, respectively.</p><p><strong>Results: </strong>In the different prognostic groups of grade 2 tumors HMMR, IDH-1, MKI-67, PDGF-A and versican, in grade 3 tumors integrin α-3, and in both groups integrin α-3 and IDH-1 mRNA expression was significantly different. Regarding protein expression, only integrin αV expression changed significantly in the prognostic groups of grade 2 tumors.</p><p><strong>Conclusions: </strong>Based on the invasion spectrum determined by this joint gene and protein expression analysis, there was a sensitivity of 87.5% and a negative predictive value of 88.9% regarding the different prognostic groups of grade 2 astrocytoma. For grade 3 tumors, the applied standard oncotherapeutic modalities apparently lacked significant anti-invasive effects.</p>","PeriodicalId":9095,"journal":{"name":"Brain Sciences","volume":"14 11","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/brainsci14111157","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Astrocytoma, an IDH-mutant is a common primary brain tumor. Total surgical resection is not feasible due to peritumoral infiltration mediated by extracellular matrix (ECM) molecules.
Methods: This study aimed at determining the expression pattern of ECM molecules in different prognostic groups of WHO grade 2 and grade 3 patients and identifying the effect of onco-radiotherapy on tumor cell invasion of grade 3 patients. Gene and protein expression of ECM molecules was determined by qRT-PCR and immunohistochemistry, respectively.
Results: In the different prognostic groups of grade 2 tumors HMMR, IDH-1, MKI-67, PDGF-A and versican, in grade 3 tumors integrin α-3, and in both groups integrin α-3 and IDH-1 mRNA expression was significantly different. Regarding protein expression, only integrin αV expression changed significantly in the prognostic groups of grade 2 tumors.
Conclusions: Based on the invasion spectrum determined by this joint gene and protein expression analysis, there was a sensitivity of 87.5% and a negative predictive value of 88.9% regarding the different prognostic groups of grade 2 astrocytoma. For grade 3 tumors, the applied standard oncotherapeutic modalities apparently lacked significant anti-invasive effects.
期刊介绍:
Brain Sciences (ISSN 2076-3425) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications in the areas of cognitive neuroscience, developmental neuroscience, molecular and cellular neuroscience, neural engineering, neuroimaging, neurolinguistics, neuropathy, systems neuroscience, and theoretical and computational neuroscience. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.