{"title":"Sparse holographic tomography reconstruction method based on self-supervised neural network with learning to synthesize strategy","authors":"Yakun Liu, Wen Xiao, Feng Pan","doi":"10.1016/j.optlastec.2024.112028","DOIUrl":null,"url":null,"abstract":"<div><div>This research proposes a novel method for sparse digital holographic tomography reconstruction. Due to the limitations of numerical aperture and sampling time, the development of a high-precision sparse digital holographic tomography reconstruction techniques is necessitated. Our main innovation is the developing a composite coordinate-based implicit neural network with learning to synthesize strategy. It addresses the information limitations of limited angle by directly mapping the sample’s rotation angle and coordinates to the phase images, allowing for the prediction of phase images at unmeasured angles without requiring external training dataset. Furthermore, it avoids the issue of high-frequency suppression caused by the uneven distribution of frequency information in the images and the network’s characteristics using separately processing low-frequency and high-frequency information in different channels, resulting in higher fidelity of the predicted phase images and the tomographic results. We validated the effectiveness of the proposed method on four different fiber structures at various sampling intervals. This method provides a new perspective for tomographic reconstruction at sparse angles.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"182 ","pages":"Article 112028"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224014865","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This research proposes a novel method for sparse digital holographic tomography reconstruction. Due to the limitations of numerical aperture and sampling time, the development of a high-precision sparse digital holographic tomography reconstruction techniques is necessitated. Our main innovation is the developing a composite coordinate-based implicit neural network with learning to synthesize strategy. It addresses the information limitations of limited angle by directly mapping the sample’s rotation angle and coordinates to the phase images, allowing for the prediction of phase images at unmeasured angles without requiring external training dataset. Furthermore, it avoids the issue of high-frequency suppression caused by the uneven distribution of frequency information in the images and the network’s characteristics using separately processing low-frequency and high-frequency information in different channels, resulting in higher fidelity of the predicted phase images and the tomographic results. We validated the effectiveness of the proposed method on four different fiber structures at various sampling intervals. This method provides a new perspective for tomographic reconstruction at sparse angles.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems