Sparse holographic tomography reconstruction method based on self-supervised neural network with learning to synthesize strategy

IF 4.6 2区 物理与天体物理 Q1 OPTICS
Yakun Liu, Wen Xiao, Feng Pan
{"title":"Sparse holographic tomography reconstruction method based on self-supervised neural network with learning to synthesize strategy","authors":"Yakun Liu,&nbsp;Wen Xiao,&nbsp;Feng Pan","doi":"10.1016/j.optlastec.2024.112028","DOIUrl":null,"url":null,"abstract":"<div><div>This research proposes a novel method for sparse digital holographic tomography reconstruction. Due to the limitations of numerical aperture and sampling time, the development of a high-precision sparse digital holographic tomography reconstruction techniques is necessitated. Our main innovation is the developing a composite coordinate-based implicit neural network with learning to synthesize strategy. It addresses the information limitations of limited angle by directly mapping the sample’s rotation angle and coordinates to the phase images, allowing for the prediction of phase images at unmeasured angles without requiring external training dataset. Furthermore, it avoids the issue of high-frequency suppression caused by the uneven distribution of frequency information in the images and the network’s characteristics using separately processing low-frequency and high-frequency information in different channels, resulting in higher fidelity of the predicted phase images and the tomographic results. We validated the effectiveness of the proposed method on four different fiber structures at various sampling intervals. This method provides a new perspective for tomographic reconstruction at sparse angles.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"182 ","pages":"Article 112028"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224014865","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This research proposes a novel method for sparse digital holographic tomography reconstruction. Due to the limitations of numerical aperture and sampling time, the development of a high-precision sparse digital holographic tomography reconstruction techniques is necessitated. Our main innovation is the developing a composite coordinate-based implicit neural network with learning to synthesize strategy. It addresses the information limitations of limited angle by directly mapping the sample’s rotation angle and coordinates to the phase images, allowing for the prediction of phase images at unmeasured angles without requiring external training dataset. Furthermore, it avoids the issue of high-frequency suppression caused by the uneven distribution of frequency information in the images and the network’s characteristics using separately processing low-frequency and high-frequency information in different channels, resulting in higher fidelity of the predicted phase images and the tomographic results. We validated the effectiveness of the proposed method on four different fiber structures at various sampling intervals. This method provides a new perspective for tomographic reconstruction at sparse angles.
基于学习合成策略的自监督神经网络稀疏全息断层成像重建方法
这项研究提出了一种新的稀疏数字全息层析成像重建方法。由于数值孔径和采样时间的限制,有必要开发一种高精度稀疏数字全息层析重建技术。我们的主要创新是开发了一种基于学习合成策略的复合坐标隐式神经网络。它通过将样本的旋转角度和坐标直接映射到相位图像,解决了有限角度的信息限制问题,从而无需外部训练数据集即可预测未测量角度的相位图像。此外,它还避免了因图像中频率信息分布不均而导致的高频抑制问题,并利用网络的特点,在不同通道中分别处理低频和高频信息,从而使预测的相位图像和断层扫描结果具有更高的保真度。我们在不同采样间隔的四种不同光纤结构上验证了所提方法的有效性。这种方法为稀疏角度下的层析成像重建提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信