Determinants of Seidel tournament matrices

IF 1 3区 数学 Q1 MATHEMATICS
Sarah Klanderman , MurphyKate Montee , Andrzej Piotrowski , Alex Rice , Bryan Shader
{"title":"Determinants of Seidel tournament matrices","authors":"Sarah Klanderman ,&nbsp;MurphyKate Montee ,&nbsp;Andrzej Piotrowski ,&nbsp;Alex Rice ,&nbsp;Bryan Shader","doi":"10.1016/j.laa.2024.11.011","DOIUrl":null,"url":null,"abstract":"<div><div>The Seidel matrix of a tournament on <em>n</em> players is an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> skew-symmetric matrix with entries in <span><math><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>−</mo><mn>1</mn><mo>}</mo></math></span> that encapsulates the outcomes of the games in the given tournament. It is known that the determinant of an <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Seidel matrix is 0 if <em>n</em> is odd, and is an odd perfect square if <em>n</em> is even. This leads to the study of the set, <span><math><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>, of square roots of determinants of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Seidel matrices. It is shown that <span><math><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> is a proper subset of <span><math><mi>D</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></math></span> for every positive even integer, and every odd integer in the interval <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>+</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><mn>2</mn><mo>]</mo></math></span> is in <span><math><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> for <em>n</em> even. The expected value and variance of <span><math><mi>det</mi><mo>⁡</mo><mi>S</mi></math></span> over the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Seidel matrices chosen uniformly at random is determined, and upper bounds on <span><math><mi>max</mi><mo>⁡</mo><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> are given, and related to the Hadamard conjecture. Finally, it is shown that for infinitely many <em>n</em>, <span><math><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> contains a gap (that is, there are odd integers <span><math><mi>k</mi><mo>&lt;</mo><mi>ℓ</mi><mo>&lt;</mo><mi>m</mi></math></span> such that <span><math><mi>k</mi><mo>,</mo><mi>m</mi><mo>∈</mo><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span> but <span><math><mi>ℓ</mi><mo>∉</mo><mi>D</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>) and several properties of the characteristic polynomials of Seidel matrices are established.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"707 ","pages":"Pages 126-151"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004324","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Seidel matrix of a tournament on n players is an n×n skew-symmetric matrix with entries in {0,1,1} that encapsulates the outcomes of the games in the given tournament. It is known that the determinant of an n×n Seidel matrix is 0 if n is odd, and is an odd perfect square if n is even. This leads to the study of the set, D(n), of square roots of determinants of n×n Seidel matrices. It is shown that D(n) is a proper subset of D(n+2) for every positive even integer, and every odd integer in the interval [1,1+n2/2] is in D(n) for n even. The expected value and variance of detS over the n×n Seidel matrices chosen uniformly at random is determined, and upper bounds on maxD(n) are given, and related to the Hadamard conjecture. Finally, it is shown that for infinitely many n, D(n) contains a gap (that is, there are odd integers k<<m such that k,mD(n) but D(n)) and several properties of the characteristic polynomials of Seidel matrices are established.
塞德尔锦标赛矩阵的决定因素
n 人锦标赛的塞德尔矩阵是一个 n×n 的倾斜对称矩阵,其条目为 {0,1,-1},包含了给定锦标赛的对局结果。众所周知,如果 n 为奇数,则 n×n 赛德尔矩阵的行列式为 0;如果 n 为偶数,则行列式为奇次完全平方。这就引出了对 n×n 赛德尔矩阵行列式平方根集合 D(n) 的研究。研究表明,对于每个正偶数整数,D(n) 都是 D(n+2) 的适当子集;对于偶数 n,区间 [1,1+n2/2] 中的每个奇数整数都在 D(n) 中。确定了在 n×n Seidel 矩阵上均匀随机选择的 detS 的期望值和方差,给出了 maxD(n) 的上界,并将其与 Hadamard 猜想联系起来。最后,证明了对于无穷多个 n,D(n) 包含一个缺口(即存在奇整数 k<ℓ<m,使得 k,m∈D(n) 但是 ℓ∉D(n)),并建立了 Seidel 矩阵特征多项式的几个性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信