{"title":"Characterization of almost-Riordan arrays with row sums","authors":"Yasemin Alp , E. Gokcen Kocer","doi":"10.1016/j.laa.2024.11.019","DOIUrl":null,"url":null,"abstract":"<div><div>The almost-Riordan arrays and their inverses are investigating by the generating functions of the row sum, the alternating row sum, and the weighted row sum. The <em>A</em>, <em>Z</em>, and <em>ω</em>-sequences of the almost-Riordan arrays are characterized by the generating functions of these row sums. Additionally, using the generating functions of these row sums, the product of two almost-Riordan arrays is obtained.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"706 ","pages":"Pages 101-123"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004397","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The almost-Riordan arrays and their inverses are investigating by the generating functions of the row sum, the alternating row sum, and the weighted row sum. The A, Z, and ω-sequences of the almost-Riordan arrays are characterized by the generating functions of these row sums. Additionally, using the generating functions of these row sums, the product of two almost-Riordan arrays is obtained.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.