Transcriptomics of SGLT2-positive early proximal tubule segments in mice: response to type 1 diabetes, SGLT1/2 inhibition or GLP1 receptor agonism.

Young Chul Kim, Vivek Das, Sadhana Kanoo, Huazhen Yao, Stephanie M Stanford, Nunzio Bottini, Anil Karihaloo, Volker Vallon
{"title":"Transcriptomics of SGLT2-positive early proximal tubule segments in mice: response to type 1 diabetes, SGLT1/2 inhibition or GLP1 receptor agonism.","authors":"Young Chul Kim, Vivek Das, Sadhana Kanoo, Huazhen Yao, Stephanie M Stanford, Nunzio Bottini, Anil Karihaloo, Volker Vallon","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>SGLT2 inhibitors (SGLT2i) and GLP1 receptor (GLP1R) agonists have kidney protective effects. To better understand their molecular effects, RNA sequencing was performed in SGLT2-positive proximal tubule segments isolated by immunostaining-guided laser capture microdissection. Male adult DBA wildtype (WT) and littermate diabetic Akita mice ± Sglt1 knockout (Sglt1-KO) were given vehicle or SGLT2i dapagliflozin (dapa; 10mg/kg diet) for 2 weeks, and other Akita mice received GLP1R agonist semaglutide (sema; 3nmol/[kg body weight*day], s.c.). Dapa (254±11mg/dL) and Sglt1-KO (367±11mg/dL) but not sema (407±44mg/dL) significantly reduced hyperglycemia in Akita mice (480±33mg/dL). The 20,748 detected annotated protein-coding genes included robust enrichment of S1-segment marker genes. Akita showed 198 (~1%) differentially expressed genes vs. WT (DEGs; adjusted p<0.1) including downregulation of anionic transport, unsaturated fatty acid and carboxylic acid metabolism. Dapa changed only 2 genes in WT but restored 43% of DEGs in Akita, including upregulation of lipid metabolic pathway, carboxylic acid metabolism and organic anion transport. In Akita, sema restored ~10% of DEGs, and Sglt1-KO and dapa were synergistic (restored ~61%) possibly involving additive blood glucose effects (193±15mg/dl). Targeted analysis of transporters and channels (t-test p<0.05) revealed that ~10% of 526 detectable transporters and channels were downregulated by Akita, with ~60% restored by dapa. Dapa, dapa+Sglt1-KO and sema also altered Akita-insensitive genes. Among DEGs in Akita, ~30% were unresponsive to any treatment, indicating potential new targets. In conclusion, SGLT2i restored transcription for multiple metabolic pathways and transporters in SGLT2-positive proximal tubule segments in diabetic mice, with a smaller effect also observed for GLP1R agonism.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"None"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SGLT2 inhibitors (SGLT2i) and GLP1 receptor (GLP1R) agonists have kidney protective effects. To better understand their molecular effects, RNA sequencing was performed in SGLT2-positive proximal tubule segments isolated by immunostaining-guided laser capture microdissection. Male adult DBA wildtype (WT) and littermate diabetic Akita mice ± Sglt1 knockout (Sglt1-KO) were given vehicle or SGLT2i dapagliflozin (dapa; 10mg/kg diet) for 2 weeks, and other Akita mice received GLP1R agonist semaglutide (sema; 3nmol/[kg body weight*day], s.c.). Dapa (254±11mg/dL) and Sglt1-KO (367±11mg/dL) but not sema (407±44mg/dL) significantly reduced hyperglycemia in Akita mice (480±33mg/dL). The 20,748 detected annotated protein-coding genes included robust enrichment of S1-segment marker genes. Akita showed 198 (~1%) differentially expressed genes vs. WT (DEGs; adjusted p<0.1) including downregulation of anionic transport, unsaturated fatty acid and carboxylic acid metabolism. Dapa changed only 2 genes in WT but restored 43% of DEGs in Akita, including upregulation of lipid metabolic pathway, carboxylic acid metabolism and organic anion transport. In Akita, sema restored ~10% of DEGs, and Sglt1-KO and dapa were synergistic (restored ~61%) possibly involving additive blood glucose effects (193±15mg/dl). Targeted analysis of transporters and channels (t-test p<0.05) revealed that ~10% of 526 detectable transporters and channels were downregulated by Akita, with ~60% restored by dapa. Dapa, dapa+Sglt1-KO and sema also altered Akita-insensitive genes. Among DEGs in Akita, ~30% were unresponsive to any treatment, indicating potential new targets. In conclusion, SGLT2i restored transcription for multiple metabolic pathways and transporters in SGLT2-positive proximal tubule segments in diabetic mice, with a smaller effect also observed for GLP1R agonism.

小鼠 SGLT2 阳性早期近端肾小管节段的转录组学:对 1 型糖尿病、SGLT1/2 抑制或 GLP1 受体激动的反应。
SGLT2 抑制剂(SGLT2i)和 GLP1 受体(GLP1R)激动剂具有保护肾脏的作用。为了更好地了解它们的分子效应,我们对通过免疫染色引导的激光捕获显微切割分离出的 SGLT2 阳性近端肾小管节段进行了 RNA 测序。雄性成年 DBA 野生型(WT)小鼠和同窝糖尿病秋田小鼠(± Sglt1 基因敲除(Sglt1-KO))连续 2 周服用药物或 SGLT2i 达帕格列净(dapa;10 毫克/千克饮食),其他秋田小鼠服用 GLP1R 激动剂司马鲁肽(sema;3 毫摩尔/[千克体重*天],s.c.)。Dapa(254±11mg/dL)和Sglt1-KO(367±11mg/dL)而非sema(407±44mg/dL)能显著降低秋田小鼠的高血糖(480±33mg/dL)。在检测到的 20,748 个已注释的蛋白质编码基因中,S1 节段标记基因的含量非常丰富。与 WT 相比,秋田小鼠显示出 198 个(约 1%)差异表达基因(DEGs;调整后 P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信