Hina Anjum, Jason P Smith, Alexandre G Martini, George S Yacu, Silvia Medrano, R Ariel Gomez, Maria Luisa S Sequeira-Lopez, Susan E Quaggin, Gal Finer
{"title":"Tcf21 as a Founder Transcription Factor in Specifying Foxd1 Cells to the Juxtaglomerular Cell Lineage.","authors":"Hina Anjum, Jason P Smith, Alexandre G Martini, George S Yacu, Silvia Medrano, R Ariel Gomez, Maria Luisa S Sequeira-Lopez, Susan E Quaggin, Gal Finer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Renin is crucial for blood pressure regulation and electrolyte balance, and its expressing cells arise from Foxd1+ stromal progenitors. However, factors guiding these progenitors toward renin-secreting cell fate remain unclear. Tcf21, a basic helix-loop-helix (bHLH) transcription factor, is essential in kidney development. Utilizing <i>Foxd1<sup>Cre/+</sup>;Tcf21<sup>f/f</sup></i> and <i>Ren1<sup>dCre/+</sup>;Tcf21<sup>f/f</sup></i> mouse models, we investigated the role of Tcf21 in the differentiation of Foxd1+ progenitor cells into juxtaglomerular (JG) cells. Immunostaining and in-situ hybridization demonstrated fewer renin-positive areas and altered renal arterial morphology, including the afferent arteriole, in <i>Foxd1<sup>Cre/+</sup>;Tcf21<sup>f/f</sup></i> kidneys compared to controls, indicating Tcf21's critical role in the emergence of renin-expressing cells. However, Tcf21 inactivation in renin-expressing cells (<i>Ren1<sup>dCre/+</sup>;Tcf21<sup>f/f</sup></i>) did not recapitulate this phenotype, suggesting Tcf21 is dispensable once renin cell identity is established. Using an integrated analysis of single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) on GFP+ cells (stromal lineage) from E12, E18, P5, and P30 <i>Foxd1<sup>Cre/+</sup>;Rosa26<sup>mTmG</sup></i> control kidneys, we analyzed the temporal dynamics of Tcf21 expression in cells comprising the JG lineage (<i>n</i>=2,054). A pseudotime trajectory analysis revealed that Tcf21 expression is highest in metanephric mesenchyme and stromal cells at early developmental stages (E12), with a decline in expression as cells mature into renin-expressing JG cells. Motif enrichment analyses supported Tcf21's significant involvement in early kidney development. These findings underscore the critical role of Tcf21 in Foxd1+ cell differentiation into JG cells during early stages of kidney development, offering insights into the molecular mechanisms governing JG cell differentiation and highlight Tcf21's pivotal role in kidney development.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"None"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Renin is crucial for blood pressure regulation and electrolyte balance, and its expressing cells arise from Foxd1+ stromal progenitors. However, factors guiding these progenitors toward renin-secreting cell fate remain unclear. Tcf21, a basic helix-loop-helix (bHLH) transcription factor, is essential in kidney development. Utilizing Foxd1Cre/+;Tcf21f/f and Ren1dCre/+;Tcf21f/f mouse models, we investigated the role of Tcf21 in the differentiation of Foxd1+ progenitor cells into juxtaglomerular (JG) cells. Immunostaining and in-situ hybridization demonstrated fewer renin-positive areas and altered renal arterial morphology, including the afferent arteriole, in Foxd1Cre/+;Tcf21f/f kidneys compared to controls, indicating Tcf21's critical role in the emergence of renin-expressing cells. However, Tcf21 inactivation in renin-expressing cells (Ren1dCre/+;Tcf21f/f) did not recapitulate this phenotype, suggesting Tcf21 is dispensable once renin cell identity is established. Using an integrated analysis of single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) on GFP+ cells (stromal lineage) from E12, E18, P5, and P30 Foxd1Cre/+;Rosa26mTmG control kidneys, we analyzed the temporal dynamics of Tcf21 expression in cells comprising the JG lineage (n=2,054). A pseudotime trajectory analysis revealed that Tcf21 expression is highest in metanephric mesenchyme and stromal cells at early developmental stages (E12), with a decline in expression as cells mature into renin-expressing JG cells. Motif enrichment analyses supported Tcf21's significant involvement in early kidney development. These findings underscore the critical role of Tcf21 in Foxd1+ cell differentiation into JG cells during early stages of kidney development, offering insights into the molecular mechanisms governing JG cell differentiation and highlight Tcf21's pivotal role in kidney development.