An approach to breaking the 100-milli-Kelvin barrier in electron temperature with a dilution-refrigerator ultrahigh vacuum scanning tunneling microscope.
Ungdon Ham, Hyeonjung Kim, Ji-Soo Yoon, Wooin Yang, Tae-Hwan Kim, Jinho Lee, Han Woong Yeom
{"title":"An approach to breaking the 100-milli-Kelvin barrier in electron temperature with a dilution-refrigerator ultrahigh vacuum scanning tunneling microscope.","authors":"Ungdon Ham, Hyeonjung Kim, Ji-Soo Yoon, Wooin Yang, Tae-Hwan Kim, Jinho Lee, Han Woong Yeom","doi":"10.1063/5.0233223","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a newly constructed dilution-refrigerator ultrahigh vacuum (UHV) scanning tunneling microscope (STM) with a 9/2/2 T superconducting vector magnet capable of achieving electron temperatures as low as 76 mK. Our design emphasizes robust thermal contacts, particularly with the sample holder through a thin insulating layer. Additionally, we focus on effective shielding and grounding against radio-frequency electromagnetic interference by integrating the critical electronics as a physically and electrically integral component of the STM setup. Scanning tunneling spectroscopy results obtained from a superconducting aluminum substrate and a gold tip indicate superior energy resolution, with a higher aspect ratio of the superconducting coherence peak in the dI/dV spectra compared to other dilution-refrigerator UHV STMs. Given that only a handful of UHV STMs with dilution refrigerators have reached electron temperatures below 100 mK, these results demonstrate the effectiveness of our design and methodology in achieving low electron temperatures.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0233223","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a newly constructed dilution-refrigerator ultrahigh vacuum (UHV) scanning tunneling microscope (STM) with a 9/2/2 T superconducting vector magnet capable of achieving electron temperatures as low as 76 mK. Our design emphasizes robust thermal contacts, particularly with the sample holder through a thin insulating layer. Additionally, we focus on effective shielding and grounding against radio-frequency electromagnetic interference by integrating the critical electronics as a physically and electrically integral component of the STM setup. Scanning tunneling spectroscopy results obtained from a superconducting aluminum substrate and a gold tip indicate superior energy resolution, with a higher aspect ratio of the superconducting coherence peak in the dI/dV spectra compared to other dilution-refrigerator UHV STMs. Given that only a handful of UHV STMs with dilution refrigerators have reached electron temperatures below 100 mK, these results demonstrate the effectiveness of our design and methodology in achieving low electron temperatures.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.