Postbiotic Effect of Escherichia coli CEC15 and Escherichia coli Nissle 1917 on a Murine Model of 5-FU-induced Intestinal Mucositis.

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Rafael de Assis Glória, Tales Fernando da Silva, Tomás Andrade Magalhães Gomes, Kátia Duarte Vital, Simone Odília Antunes Fernandes, Valbert Nascimento Cardoso, Ênio Ferreira, Jean-Mark Chatel, Philippe Langella, Claire Cherbuy, Yves Le Loir, Gwénaël Jan, Éric Guédon, Vasco Ariston de Carvalho Azevedo
{"title":"Postbiotic Effect of Escherichia coli CEC15 and Escherichia coli Nissle 1917 on a Murine Model of 5-FU-induced Intestinal Mucositis.","authors":"Rafael de Assis Glória, Tales Fernando da Silva, Tomás Andrade Magalhães Gomes, Kátia Duarte Vital, Simone Odília Antunes Fernandes, Valbert Nascimento Cardoso, Ênio Ferreira, Jean-Mark Chatel, Philippe Langella, Claire Cherbuy, Yves Le Loir, Gwénaël Jan, Éric Guédon, Vasco Ariston de Carvalho Azevedo","doi":"10.1007/s12602-024-10414-0","DOIUrl":null,"url":null,"abstract":"<p><p>Probiotics are live microorganisms that, when administered in adequate amounts, can bring health benefits to the host. Most of these organisms are found naturally in the human gastrointestinal tract. Escherichia coli strains Nissle 1917 (EcN), and CEC15 have shown beneficial effects in murine models of intestinal inflammation, such as colitis and mucositis. The present study evaluated the effects as postbiotic of heat-inactivated and cell-free supernatant preparations of EcN and CEC15 in attenuating 5-fluorouracil (5-FU)-induced intestinal mucositis in mice and compared them with the probiotic effects of the live preparations. BALB/c mice were fed, by daily gavage, with 10<sup>10</sup> CFU of live or inactivated bacteria or with 300 µL of cell-free supernatant for 12 days. On the 10th day, all animals, except for the control group, received an intraperitoneal injection of 5-FU (300 mg/kg). After 72 h of 5-FU administration, animals were euthanized, and the ileum and blood were collected for analysis. Treatments with live and heat-inactivated CEC15 mitigated weight loss, preserved intestinal length, reduced histological damage, maintained goblet cells, decreased neutrophil infiltration, and modulated expression of inflammatory and barrier genes when compared to 5-FU mucositis controls. EcN showed more limited effects. CEC15 upregulated mRNA expression of the mucin MUC2 and tight junction protein TJP1. CEC15 demonstrated protective effects against 5-FU-induced mucositis, whether administered with live, heat-inactivated, or cell-free supernatant. This suggests that CEC15 mediates a protective response via secreted metabolites and does not require viability. The postbiotic forms of CEC15 present advantages for use in immunocompromised patients. This study elucidates the anti-inflammatory and barrier-protective effects of CEC15 against intestinal mucositis.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10414-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Probiotics are live microorganisms that, when administered in adequate amounts, can bring health benefits to the host. Most of these organisms are found naturally in the human gastrointestinal tract. Escherichia coli strains Nissle 1917 (EcN), and CEC15 have shown beneficial effects in murine models of intestinal inflammation, such as colitis and mucositis. The present study evaluated the effects as postbiotic of heat-inactivated and cell-free supernatant preparations of EcN and CEC15 in attenuating 5-fluorouracil (5-FU)-induced intestinal mucositis in mice and compared them with the probiotic effects of the live preparations. BALB/c mice were fed, by daily gavage, with 1010 CFU of live or inactivated bacteria or with 300 µL of cell-free supernatant for 12 days. On the 10th day, all animals, except for the control group, received an intraperitoneal injection of 5-FU (300 mg/kg). After 72 h of 5-FU administration, animals were euthanized, and the ileum and blood were collected for analysis. Treatments with live and heat-inactivated CEC15 mitigated weight loss, preserved intestinal length, reduced histological damage, maintained goblet cells, decreased neutrophil infiltration, and modulated expression of inflammatory and barrier genes when compared to 5-FU mucositis controls. EcN showed more limited effects. CEC15 upregulated mRNA expression of the mucin MUC2 and tight junction protein TJP1. CEC15 demonstrated protective effects against 5-FU-induced mucositis, whether administered with live, heat-inactivated, or cell-free supernatant. This suggests that CEC15 mediates a protective response via secreted metabolites and does not require viability. The postbiotic forms of CEC15 present advantages for use in immunocompromised patients. This study elucidates the anti-inflammatory and barrier-protective effects of CEC15 against intestinal mucositis.

大肠埃希菌 CEC15 和大肠埃希菌 Nissle 1917 对 5-FU 诱导的小鼠肠黏膜炎模型的后生物效应
益生菌是活的微生物,适量摄入可为宿主带来健康益处。这些微生物大多天然存在于人体胃肠道中。大肠杆菌菌株 Nissle 1917(EcN)和 CEC15 在小鼠肠道炎症(如结肠炎和粘膜炎)模型中显示出有益作用。本研究评估了 EcN 和 CEC15 热灭活和无细胞上清液制剂作为后益生菌在减轻 5 氟尿嘧啶(5-FU)诱导的小鼠肠道粘膜炎方面的作用,并与活制剂的益生作用进行了比较。每天给 BALB/c 小鼠灌胃 1010 CFU 活菌或灭活菌或 300 µL 无细胞上清液,连续 12 天。第 10 天,除对照组外,所有动物均腹腔注射 5-FU(300 毫克/千克)。注射 5-FU 72 小时后,动物被安乐死,并收集回肠和血液进行分析。与5-FU粘膜炎对照组相比,用活的和热灭活的CEC15治疗可减轻体重下降,保持肠道长度,减少组织学损伤,维持鹅口疮细胞,减少中性粒细胞浸润,并调节炎症和屏障基因的表达。EcN 的作用较为有限。CEC15 可上调粘蛋白 MUC2 和紧密连接蛋白 TJP1 的 mRNA 表达。CEC15 对 5-FU 诱导的粘膜炎具有保护作用,无论是用活细胞、热灭活细胞还是无细胞上清液给药。这表明,CEC15 通过分泌代谢物介导保护性反应,而不需要活力。后生物形式的 CEC15 具有在免疫力低下的患者中使用的优势。这项研究阐明了 CEC15 对肠道粘膜炎的抗炎和屏障保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probiotics and Antimicrobial Proteins
Probiotics and Antimicrobial Proteins BIOTECHNOLOGY & APPLIED MICROBIOLOGYMICROB-MICROBIOLOGY
CiteScore
11.30
自引率
6.10%
发文量
140
期刊介绍: Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信