Single-channel electroencephalography decomposition by detector-atom network and its pre-trained model

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Hiroshi Higashi
{"title":"Single-channel electroencephalography decomposition by detector-atom network and its pre-trained model","authors":"Hiroshi Higashi","doi":"10.1016/j.jneumeth.2024.110323","DOIUrl":null,"url":null,"abstract":"<div><div>Signal decomposition techniques utilizing multi-channel spatial features are critical for analyzing, denoising, and classifying electroencephalography (EEG) signals. To facilitate the decomposition of signals recorded with limited channels, this paper presents a novel single-channel decomposition approach that does not rely on multi-channel features. Our model posits that an EEG signal comprises short, shift-invariant waves, referred to as atoms. We design a decomposer as an artificial neural network aimed at estimating these atoms and detecting their time shifts and amplitude modulations within the input signal. The efficacy of our method was validated across various scenarios in brain–computer interfaces and neuroscience, demonstrating enhanced performance. Additionally, cross-dataset validation indicates the feasibility of a pre-trained model, enabling a plug-and-play signal decomposition module.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"414 ","pages":"Article 110323"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027024002681","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Signal decomposition techniques utilizing multi-channel spatial features are critical for analyzing, denoising, and classifying electroencephalography (EEG) signals. To facilitate the decomposition of signals recorded with limited channels, this paper presents a novel single-channel decomposition approach that does not rely on multi-channel features. Our model posits that an EEG signal comprises short, shift-invariant waves, referred to as atoms. We design a decomposer as an artificial neural network aimed at estimating these atoms and detecting their time shifts and amplitude modulations within the input signal. The efficacy of our method was validated across various scenarios in brain–computer interfaces and neuroscience, demonstrating enhanced performance. Additionally, cross-dataset validation indicates the feasibility of a pre-trained model, enabling a plug-and-play signal decomposition module.
利用检测器-原子网络及其预训练模型进行单通道脑电图分解。
利用多通道空间特征的信号分解技术对于脑电图(EEG)信号的分析、去噪和分类至关重要。为了便于对有限信道记录的信号进行分解,本文提出了一种不依赖多信道特征的新型单信道分解方法。我们的模型假设脑电信号由短的、移位不变的波组成,这些波被称为 "原子"。我们将分解器设计为人工神经网络,旨在估计这些原子,并检测输入信号中的时移和振幅调制。我们的方法在脑机接口和神经科学的各种应用场景中都得到了验证,显示出更高的性能。此外,跨数据集验证表明了预训练模型的可行性,使即插即用信号分解模块成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信