Guido Stoll, Bernhard Nieswandt, Michael K Schuhmann
{"title":"Ischemia/reperfusion injury in acute human and experimental stroke: focus on thrombo-inflammatory mechanisms and treatments.","authors":"Guido Stoll, Bernhard Nieswandt, Michael K Schuhmann","doi":"10.1186/s42466-024-00355-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite high recanalization rates of > 90% after endovascular thrombectomy (EVT) clinical outcome in around 50% of treated acute ischemic stroke (AIS) patients is still poor. Novel treatments augmenting the beneficial effects of recanalization are eagerly awaited, but this requires mechanistic insights to explain and overcome futile recanalization.</p><p><strong>Main body: </strong>At least two mechanisms contribute to futile recanalization after cerebral large vessel occlusions (LVO): (i) the no reflow phenomenon as evidenced by randomly distributed areas without return of blood flow despite reperfusion of large cerebral arteries, and (ii) ischemia/reperfusion (I/R) injury, the paradoxically harmful aspect of blood flow return in transiently ischemic organs. There is accumulating evidence from experimental stroke models that platelets and leukocytes interact and partly obstruct the microvasculature under LVO, and that platelet-driven inflammation (designated thrombo-inflammation) extends into the reperfusion phase and causes I/R injury. Blocking of platelet glycoprotein receptors (GP) Ib and GPVI ameliorated inflammation and I/R injury providing novel therapeutic options. Recently, MRI studies confirmed a significant, up to 40% infarct expansion after recanalization in AIS thereby proofing the existance of I/R injury in the human brain. Moreover, analysis of minute samples of ischemic arterial blood aspirated directly from the pial cerebral collateral circulation under LVO during the routine EVT procedure confirmed platelet activation and platelet-driven leukocyte accumulation in AIS and, thus, the principal transferability of pathophysiological stroke mechanisms from rodents to man. Two recently published clinical phase 1b/2a trials targeted (thrombo-) inflammation in AIS: The ACTIMIS trial targeting platelet GPVI by glenzocimab provided encouraging safety signals in AIS similar to the ApTOLL trial targeting toll-like receptor 4, a central receptor guiding stroke-induced innate immunity. However, both studies were not powered to show clinical efficacy.</p><p><strong>Conclusions: </strong>The fact that the significance of I/R injury in AIS has recently been formally established and given the decisive role of platelet-leukocytes interactions herein, new avenues for adjunct stroke treatments emerge. Adjusted study designs to increase the probability of success are of outmost importance and we look forward from what can be learned from the so far unpublished, presumbably negative ACTISAFE and MOST trials.</p>","PeriodicalId":94156,"journal":{"name":"Neurological research and practice","volume":"6 1","pages":"57"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological research and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42466-024-00355-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Despite high recanalization rates of > 90% after endovascular thrombectomy (EVT) clinical outcome in around 50% of treated acute ischemic stroke (AIS) patients is still poor. Novel treatments augmenting the beneficial effects of recanalization are eagerly awaited, but this requires mechanistic insights to explain and overcome futile recanalization.
Main body: At least two mechanisms contribute to futile recanalization after cerebral large vessel occlusions (LVO): (i) the no reflow phenomenon as evidenced by randomly distributed areas without return of blood flow despite reperfusion of large cerebral arteries, and (ii) ischemia/reperfusion (I/R) injury, the paradoxically harmful aspect of blood flow return in transiently ischemic organs. There is accumulating evidence from experimental stroke models that platelets and leukocytes interact and partly obstruct the microvasculature under LVO, and that platelet-driven inflammation (designated thrombo-inflammation) extends into the reperfusion phase and causes I/R injury. Blocking of platelet glycoprotein receptors (GP) Ib and GPVI ameliorated inflammation and I/R injury providing novel therapeutic options. Recently, MRI studies confirmed a significant, up to 40% infarct expansion after recanalization in AIS thereby proofing the existance of I/R injury in the human brain. Moreover, analysis of minute samples of ischemic arterial blood aspirated directly from the pial cerebral collateral circulation under LVO during the routine EVT procedure confirmed platelet activation and platelet-driven leukocyte accumulation in AIS and, thus, the principal transferability of pathophysiological stroke mechanisms from rodents to man. Two recently published clinical phase 1b/2a trials targeted (thrombo-) inflammation in AIS: The ACTIMIS trial targeting platelet GPVI by glenzocimab provided encouraging safety signals in AIS similar to the ApTOLL trial targeting toll-like receptor 4, a central receptor guiding stroke-induced innate immunity. However, both studies were not powered to show clinical efficacy.
Conclusions: The fact that the significance of I/R injury in AIS has recently been formally established and given the decisive role of platelet-leukocytes interactions herein, new avenues for adjunct stroke treatments emerge. Adjusted study designs to increase the probability of success are of outmost importance and we look forward from what can be learned from the so far unpublished, presumbably negative ACTISAFE and MOST trials.