Diwei Shi , Jiexi Song , Yanqing Qin , Xinyu Chen , Shiyu Du
{"title":"High-throughput design and computational screening of PdBiSe-like equiatomic system with multi-fold fermions","authors":"Diwei Shi , Jiexi Song , Yanqing Qin , Xinyu Chen , Shiyu Du","doi":"10.1016/j.mssp.2024.109129","DOIUrl":null,"url":null,"abstract":"<div><div>The PdBiSe-like structure material stands out as singular topological properties, characterized by its unique six-fold degenerate fermions. With the aim of exploring more topological materials of PdBiSe-like system, we embarked on thorough high-throughput screening and computational analysis of PdBiSe-like structures, utilizing first-principles calculations coupling the OQMD and MP Database. This meticulous process yielded 75 stable phases, 9 of which are previously discovered phases, while the remaining 66 represent hitherto unreported novel configurations. Notably, through intricate band structure calculations, we uncovered that 31 of these structures possess six-fold degenerate fermions at R high-symmetry points within reciprocal space. As a result, our high-throughput screening not only reconfirmed the 9 known PdBiSe-like topological materials but also unearthed 22 new topological quantum materials, recognized with six-fold degenerate fermion states proximate to the Fermi level, thereby expanding the topological material realm of PdBiSe-like system.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109129"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124010254","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The PdBiSe-like structure material stands out as singular topological properties, characterized by its unique six-fold degenerate fermions. With the aim of exploring more topological materials of PdBiSe-like system, we embarked on thorough high-throughput screening and computational analysis of PdBiSe-like structures, utilizing first-principles calculations coupling the OQMD and MP Database. This meticulous process yielded 75 stable phases, 9 of which are previously discovered phases, while the remaining 66 represent hitherto unreported novel configurations. Notably, through intricate band structure calculations, we uncovered that 31 of these structures possess six-fold degenerate fermions at R high-symmetry points within reciprocal space. As a result, our high-throughput screening not only reconfirmed the 9 known PdBiSe-like topological materials but also unearthed 22 new topological quantum materials, recognized with six-fold degenerate fermion states proximate to the Fermi level, thereby expanding the topological material realm of PdBiSe-like system.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.