Fabrication of nickel-tetramine phthalocyanine-sugarcane pith graphene oxide composites for the efficient photocatalytic degradation of aniline blue and eosin B
IF 4.2 3区 工程技术Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
{"title":"Fabrication of nickel-tetramine phthalocyanine-sugarcane pith graphene oxide composites for the efficient photocatalytic degradation of aniline blue and eosin B","authors":"Luo Shaohua , Tu Xinman , Li Jun","doi":"10.1016/j.mssp.2024.109142","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, sugarcane pith was used to prepare graphene oxide (GO), and sugarcane pith graphene oxide (SPGO) was bonded to nickel-tetramine phthalocyanine (NiTAPc) to synthesize NiTAPc-SPGO. The NiTAPc-SPGO photocatalytic performance was evaluated by measuring aniline blue (AB) and eosin B (EB) photodegradation under xenon lamp irradiation. The effect of reaction conditions, such as dark storage conditions, with or without H<sub>2</sub>O<sub>2</sub>, on the photocatalytic degradation of these dyes was investigated. The materials were characterized using ultraviolet–visible (UV–vis) spectroscopy, Fourier transform infrared spectroscopy, UV–Vis diffuse reflectance spectroscopy, X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. Furthermore, a suitable mechanism for the NiTAPc-SPGO-mediated photocatalytic degradation of the dyes was proposed. The results showed that NiTAPc-SPGO had a higher degradation ability for EB (93.32 %) and for AB (84.79 %) in the presence of 1.5 mL H<sub>2</sub>O<sub>2</sub>. H<sub>2</sub>O<sub>2</sub> and NiTAPc-SPGO showed synergistic effects, which accelerate the dye's degradation degree and rate. Under xenon lamp irradiation, the NiTAPc in NiTAPc-SPGO turned into the excited state, which disintegrated into hole–electron pairs. The NiTAPc-SPGO composite material showed lower circular impedance and resistivity and enhanced conductivity and ability to separate light-generated carriers than SPGO.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"187 ","pages":"Article 109142"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124010382","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, sugarcane pith was used to prepare graphene oxide (GO), and sugarcane pith graphene oxide (SPGO) was bonded to nickel-tetramine phthalocyanine (NiTAPc) to synthesize NiTAPc-SPGO. The NiTAPc-SPGO photocatalytic performance was evaluated by measuring aniline blue (AB) and eosin B (EB) photodegradation under xenon lamp irradiation. The effect of reaction conditions, such as dark storage conditions, with or without H2O2, on the photocatalytic degradation of these dyes was investigated. The materials were characterized using ultraviolet–visible (UV–vis) spectroscopy, Fourier transform infrared spectroscopy, UV–Vis diffuse reflectance spectroscopy, X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. Furthermore, a suitable mechanism for the NiTAPc-SPGO-mediated photocatalytic degradation of the dyes was proposed. The results showed that NiTAPc-SPGO had a higher degradation ability for EB (93.32 %) and for AB (84.79 %) in the presence of 1.5 mL H2O2. H2O2 and NiTAPc-SPGO showed synergistic effects, which accelerate the dye's degradation degree and rate. Under xenon lamp irradiation, the NiTAPc in NiTAPc-SPGO turned into the excited state, which disintegrated into hole–electron pairs. The NiTAPc-SPGO composite material showed lower circular impedance and resistivity and enhanced conductivity and ability to separate light-generated carriers than SPGO.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.