{"title":"Numerical analysis of All-Optical universal NAND and NOR photonic crystal logic gates by creating holes in silicon material","authors":"Fariborz Parandin, Pouya Karami","doi":"10.1016/j.optlastec.2024.112197","DOIUrl":null,"url":null,"abstract":"<div><div>All-optical NAND and NOR logical gates based on two-dimensional photonic crystals have been designed and analyzed in this research. A hole in the silicon substrate was created to design the desired gates, and the light emission analysis was performed using the FDTD numerical method. Most of the circuits that have been designed so far based on photonic crystals have included dielectric rods in the airfield. This research uses a hole in the silicon substrate, which is more suitable for fabrication. The proposed structure is created symmetrically using a small photonic crystal. The simulation results show that this small structure can be used as two NAND and NOR gates, which have a suitable power difference in the upper and lower logic states. Therefore, the proposed structure is suitable for precise logic circuits and high transmission speed. Due to the simplicity of structure and small size, the output stable time for NAND and NOR gates are 0.9 ps and 0.67 ps, respectively, indicating the gates’ low delay time. Also, the value of the contrast ratio for NAND and NOR gates is 7.26 dB and 6.35 dB, respectively, which indicates the appropriate power difference in the upper and lower logic states.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"182 ","pages":"Article 112197"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224016554","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
All-optical NAND and NOR logical gates based on two-dimensional photonic crystals have been designed and analyzed in this research. A hole in the silicon substrate was created to design the desired gates, and the light emission analysis was performed using the FDTD numerical method. Most of the circuits that have been designed so far based on photonic crystals have included dielectric rods in the airfield. This research uses a hole in the silicon substrate, which is more suitable for fabrication. The proposed structure is created symmetrically using a small photonic crystal. The simulation results show that this small structure can be used as two NAND and NOR gates, which have a suitable power difference in the upper and lower logic states. Therefore, the proposed structure is suitable for precise logic circuits and high transmission speed. Due to the simplicity of structure and small size, the output stable time for NAND and NOR gates are 0.9 ps and 0.67 ps, respectively, indicating the gates’ low delay time. Also, the value of the contrast ratio for NAND and NOR gates is 7.26 dB and 6.35 dB, respectively, which indicates the appropriate power difference in the upper and lower logic states.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems