Wei Wang , Dongdong Zou , Zhenpeng Wu , Qi Sui , Dongmei Huang , Chao Lu , Fan Li
{"title":"Alamouti coding enabled polarization insensitive simplified self-homodyne coherent system for short-reach optical interconnects","authors":"Wei Wang , Dongdong Zou , Zhenpeng Wu , Qi Sui , Dongmei Huang , Chao Lu , Fan Li","doi":"10.1016/j.optlastec.2024.112164","DOIUrl":null,"url":null,"abstract":"<div><div>Coherent technology inherent with more available degrees of freedom is deemed as a competitive solution for next-generation ultra-high-speed short-reach optical interconnects. However, the high system cost, elevated power consumption, and large footprint size pose formidable barriers to the application of conventional coherent systems in short-reach scenarios. Self-homodyne coherent detection exhibits its potential for short-reach applications due to the sharing of the signal carrier and the local oscillator (LO), which not only reduces the system cost but also eliminates the frequency offset. Nevertheless, the self-homodyne coherent technique suffers from the polarization fading issue due to the random polarization states of the remote LO. In this paper, an Alamouti coding enabled simplified self-homodyne coherent detection technique is proposed to solve the polarization fading issue, resulting in a polarization-insensitive receiver. Besides, to further reduce the computational complexity of the system, the digital subcarrier multiplexing (DSCM) technique is discussed to alleviate the complexity of chromatic dispersion compensation (CDC), which is another dominant power consumption module of the receiver-side digital signal processing. The performance of the proposed scheme is demonstrated with a 50Gbaud 4-subcarrier 16/32QAM DSCM signal. The results show that polarization-insensitive self-homodyne detection is achieved by the transmitter-side Alamouti coding technique, circumventing the sophisticated automatic polarization controller for the polarization state tracking of the remote LO. In addition, by applying the joint dispersion compensation and equalization (JDCE) method for the DSCM signal, the CD-induced penalty can be fully addressed by increasing 4 taps in the equalizer for an 80 km single-mode fiber transmission without an individual CDC module, reducing the computational complexity of the system significantly.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"182 ","pages":"Article 112164"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224016220","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Coherent technology inherent with more available degrees of freedom is deemed as a competitive solution for next-generation ultra-high-speed short-reach optical interconnects. However, the high system cost, elevated power consumption, and large footprint size pose formidable barriers to the application of conventional coherent systems in short-reach scenarios. Self-homodyne coherent detection exhibits its potential for short-reach applications due to the sharing of the signal carrier and the local oscillator (LO), which not only reduces the system cost but also eliminates the frequency offset. Nevertheless, the self-homodyne coherent technique suffers from the polarization fading issue due to the random polarization states of the remote LO. In this paper, an Alamouti coding enabled simplified self-homodyne coherent detection technique is proposed to solve the polarization fading issue, resulting in a polarization-insensitive receiver. Besides, to further reduce the computational complexity of the system, the digital subcarrier multiplexing (DSCM) technique is discussed to alleviate the complexity of chromatic dispersion compensation (CDC), which is another dominant power consumption module of the receiver-side digital signal processing. The performance of the proposed scheme is demonstrated with a 50Gbaud 4-subcarrier 16/32QAM DSCM signal. The results show that polarization-insensitive self-homodyne detection is achieved by the transmitter-side Alamouti coding technique, circumventing the sophisticated automatic polarization controller for the polarization state tracking of the remote LO. In addition, by applying the joint dispersion compensation and equalization (JDCE) method for the DSCM signal, the CD-induced penalty can be fully addressed by increasing 4 taps in the equalizer for an 80 km single-mode fiber transmission without an individual CDC module, reducing the computational complexity of the system significantly.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems