Demonstration of a three-active-section DFB laser with photon-photon resonance and detuned loading effects to obtain enhanced bandwidth and maintained high output power
Xiang Ma , Hefei Qi , Yuedi Ding , Boyuan Liu , Wenqi Yu , Shaobo Li , Weihua Guo
{"title":"Demonstration of a three-active-section DFB laser with photon-photon resonance and detuned loading effects to obtain enhanced bandwidth and maintained high output power","authors":"Xiang Ma , Hefei Qi , Yuedi Ding , Boyuan Liu , Wenqi Yu , Shaobo Li , Weihua Guo","doi":"10.1016/j.optlastec.2024.112127","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancement of the modulation bandwidth of the directly modulated semiconductor laser has attracted tremendous attention for applications in optical fiber communication and optical interconnects. However, modulation bandwidth is enhanced by some special technology such as integrating the active region or passive region regularly, which lead to low power and complex fabrication. Here we design and demonstrate a monolithic integrated three-active-section distributed feedback (TAS-DFB) laser with enhanced bandwidth theoretically and experimentally. The laser includes three sections: the DFB section, feedback section and active phase section. The three sections share the same multiple quantum-well structure. To enhance the modulation bandwidth beyond the intrinsic modulation bandwidth, both photon-photon resonance (PPR) and detuned loading (DL) effects are utilized to achieve over 55 GHz. The active phase section shows promise in achieving high bandwidth with PPR and relatively high output power of ∼ 10 mW at 25 °C under continuous-wave (CW) operation simultaneously. The fabrication process of the TAS-DFB laser is simplified due to the conventional and identical active layer structure.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"182 ","pages":"Article 112127"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224015858","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancement of the modulation bandwidth of the directly modulated semiconductor laser has attracted tremendous attention for applications in optical fiber communication and optical interconnects. However, modulation bandwidth is enhanced by some special technology such as integrating the active region or passive region regularly, which lead to low power and complex fabrication. Here we design and demonstrate a monolithic integrated three-active-section distributed feedback (TAS-DFB) laser with enhanced bandwidth theoretically and experimentally. The laser includes three sections: the DFB section, feedback section and active phase section. The three sections share the same multiple quantum-well structure. To enhance the modulation bandwidth beyond the intrinsic modulation bandwidth, both photon-photon resonance (PPR) and detuned loading (DL) effects are utilized to achieve over 55 GHz. The active phase section shows promise in achieving high bandwidth with PPR and relatively high output power of ∼ 10 mW at 25 °C under continuous-wave (CW) operation simultaneously. The fabrication process of the TAS-DFB laser is simplified due to the conventional and identical active layer structure.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems