Matrix diagonalisation in sesquilinear symplectic spaces

IF 1 3区 数学 Q1 MATHEMATICS
Tanvi Jain , Kirti Kajla
{"title":"Matrix diagonalisation in sesquilinear symplectic spaces","authors":"Tanvi Jain ,&nbsp;Kirti Kajla","doi":"10.1016/j.laa.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>The symplectic inner product on <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span> is the sesquilinear form given by<span><span><span><math><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo><mo>=</mo><mo>〈</mo><mi>x</mi><mo>,</mo><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mi>y</mi><mo>〉</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math></span> is the real skew-symmetric, orthogonal <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> block matrix <span><math><mo>[</mo><mtable><mtr><mtd><mn>0</mn></mtd><mtd><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></mtd></mtr><mtr><mtd><mo>−</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub></mtd><mtd><mn>0</mn></mtd></mtr></mtable><mo>]</mo></math></span>. We derive results analogous to the spectral theorem and singular value decomposition for complex matrices such as Hamiltonian and <em>J</em>-normal matrices, in the sesquilinear symplectic inner product spaces.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"706 ","pages":"Pages 1-23"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004270","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The symplectic inner product on C2n is the sesquilinear form given by[x,y]=x,J2ny, where J2n is the real skew-symmetric, orthogonal 2×2 block matrix [0InIn0]. We derive results analogous to the spectral theorem and singular value decomposition for complex matrices such as Hamiltonian and J-normal matrices, in the sesquilinear symplectic inner product spaces.
倍线性交映空间中的矩阵对角化
C2n 上的交映内积是由[x,y]=〈x,J2ny〉给出的倍线性形式,其中 J2n 是实倾斜对称正交 2×2 矩阵 [0In-In0]。在倍线性交映内积空间中,我们推导出类似于哈密顿矩阵和 J 正矩阵等复数矩阵的谱定理和奇异值分解的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信