An uncertainty-incorporated active data diffusion learning framework for few-shot equipment RUL prediction

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Chao Zhang , Daqing Gong , Gang Xue
{"title":"An uncertainty-incorporated active data diffusion learning framework for few-shot equipment RUL prediction","authors":"Chao Zhang ,&nbsp;Daqing Gong ,&nbsp;Gang Xue","doi":"10.1016/j.ress.2024.110632","DOIUrl":null,"url":null,"abstract":"<div><div>In predicting the remaining useful life (RUL) of critical equipment, the challenge of obtaining degradation data and the limitation of data volume lead to few-shot problems that significantly impact prediction accuracy. To address this issue, this paper introduces a reinforcement learning feedback loop mechanism for predicting the RUL of critical equipment. Initially, the framework uses a data diffusion model to generate a dataset that closely approximates the distribution of the labeled samples for data augmentation. Subsequently, Bayesian deep learning and Monte Carlo (MC) dropout inference provide uncertainty quantifications for RUL interval predictions. An active learning strategy, which is based on uncertainty and diversity, converts unlabeled samples into labeled samples, thereby selecting the most effective training dataset. In each iteration, the model adjusts its strategy for selecting and generating data based on the current state of learning, dynamically adapting to the needs of the learning process via Bayesian methods. The proposed prediction framework was validated through experiments using the C-MAPSS and NASA battery datasets. The results indicate that the application of data diffusion and active learning strategies significantly enhances prediction performance, increasing confidence by 42 %. Comparative experiments with other benchmark methods demonstrate that the proposed method reduces prediction uncertainty by at least 15 %.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"254 ","pages":"Article 110632"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024007038","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

In predicting the remaining useful life (RUL) of critical equipment, the challenge of obtaining degradation data and the limitation of data volume lead to few-shot problems that significantly impact prediction accuracy. To address this issue, this paper introduces a reinforcement learning feedback loop mechanism for predicting the RUL of critical equipment. Initially, the framework uses a data diffusion model to generate a dataset that closely approximates the distribution of the labeled samples for data augmentation. Subsequently, Bayesian deep learning and Monte Carlo (MC) dropout inference provide uncertainty quantifications for RUL interval predictions. An active learning strategy, which is based on uncertainty and diversity, converts unlabeled samples into labeled samples, thereby selecting the most effective training dataset. In each iteration, the model adjusts its strategy for selecting and generating data based on the current state of learning, dynamically adapting to the needs of the learning process via Bayesian methods. The proposed prediction framework was validated through experiments using the C-MAPSS and NASA battery datasets. The results indicate that the application of data diffusion and active learning strategies significantly enhances prediction performance, increasing confidence by 42 %. Comparative experiments with other benchmark methods demonstrate that the proposed method reduces prediction uncertainty by at least 15 %.
不确定性融入式主动数据扩散学习框架,用于少发设备 RUL 预测
在预测关键设备的剩余使用寿命(RUL)时,获取降解数据的挑战和数据量的限制导致了少数问题,严重影响了预测精度。为解决这一问题,本文引入了一种强化学习反馈循环机制,用于预测关键设备的剩余使用寿命。首先,该框架使用数据扩散模型生成一个数据集,该数据集近似于用于数据增强的标记样本分布。随后,贝叶斯深度学习和蒙特卡洛(MC)遗漏推理为 RUL 间隔预测提供了不确定性量化。基于不确定性和多样性的主动学习策略将未标记样本转换为标记样本,从而选择最有效的训练数据集。在每次迭代中,模型都会根据当前的学习状态调整其选择和生成数据的策略,通过贝叶斯方法动态适应学习过程的需要。通过使用 C-MAPSS 和 NASA 电池数据集进行实验,验证了所提出的预测框架。结果表明,数据扩散和主动学习策略的应用大大提高了预测性能,置信度提高了 42%。与其他基准方法的对比实验表明,所提出的方法至少降低了 15% 的预测不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信